

T800-02 CTCSS Encoder/Decoder

21st April 1999

Applicability

This Technical Note (TN) applies to T800 Series I base station equipment and T700 series duplex two-way radios.

Introduction

The T800-02 CTCSS unit is designed to operate with the T800 Series I range of receivers and transmitters. It will encode and decode CTCSS tone frequencies within the range 67 to 250.3 Hz and is compatible with any other CTCSS unit which conforms to EIA RS220. The T800-02 has silent squelch tail circuitry fitted to improve communication quality.

When fitted to a T800 Series I radio, the T800-02 is internally mounted above the audio processor section onto screw lugs provided on the chassis. Provision has been made for two units to be fitted for dual tone CTCSS if required.

The T800-02 CTCSS unit can also be fitted to a T700 duplex radio. The T700 duplex radio may be configured in a variety of fashions, including repeater or line control base. The T800-02 is also compatible with the T700 600 ohm interface PCB.

This TN replaces TI-346D. Any part that has changed from TI-346D is indicated by a vertical line in the outer margin of the page. If you have any questions about this TN or the procedures it describes, please contact your nearest Tait Dealer or Customer Service Organisation. If necessary, you can get additional technical help from Customer Support, Radio Systems Division, Tait Electronics Ltd, Christchurch, New Zealand.

Parts Required

The T800-02 CTCSS kit should contain the following items for fitting the T800-02 PCB to a T800 Series I receiver or transmitter:
$1 \times$ T800-02 CTCSS PCB
2 x M3x8 pan Torx screws
1 x wiring loom complete with socket

You will also need the following components if fitting the T800-02 PCB to a T700 radio:
$1 \times$ 10k chip resistor
$2 \times 1 \mathrm{~N} 4531$ diodes
1 x 12k resistor
$180 \mathrm{~mm} \times$ double sided foam tape

Fitting The T800-02 To A T800 Series I

1. Mount the T800-02 PCB in the T800 Series I receiver or transmitter as shown in Figure 1.

Figure 1 T800-02 To T800 Series I Mounting Details
2. Connect the T800-02 to the audio and power supply points in the audio processor as shown in Figure 2 (receivers) or Figure 3 and Figure 4 (transmitters).

Note 1: For older model receivers without "MUTE I/PA", replace R160 with a zero ohm resistor and connect S3 to "MUTE I/P" (refer to Technical News No. 51).
| Note 2: For T825 receivers, connect S3 to "MUTE I/P2".

Figure 2 Receiver CTCSS Wiring Details
Note 3: If fitting a T800-02 PCB to a T800 Series I module already fitted with a T800-07 multichannel PCB, remove C19 from the T800 PCB.

Figure 3 Transmitter CTCSS Wiring Details

Figure 4 Talk Through Repeater Wiring

Fitting The T800-02 To A T700

T800-02 PCB Modifications

1. Replace R78 with the 10 k chip resistor provided and solder the 12 k resistor between S 8 and ground, as shown in Figure 5.
2. Remove the wire from S 5 and solder the two 1 N 4531 diodes between S 5 and the end of the wire, as shown in Figure 6 and Figure 8.
Slide a length of silicone rubber sleeving over the two diodes.
Note: Orientate the diodes so that the diode cathodes face away from the T800-02 PCB.

Figure 5 T800-02 PCB Layout - Bottom Side

Figure 6 T800-02 PCB Layout - Top Side

T700 Control PCB Modifications

1. Cut the track from pin 5 of IC209 and remove R99, as shown in Figure 7. Solder the T800-02 wire from S8 to the test pad indicated in Figure 7.

Figure 7 T700 Control PCB - Bottom Side
2. Attach the wires from the T800-02 PCB to the top side of the T700 control PCB as follows (refer to Figure 8):

T800-02 PCB	T700 Control PCB
S1	P5 Pin 8 (Rx--Det--Audio)
S4	P 5 Pin 16 (Tx--CTCSS)
S5	IC209 Pin 5 (Aud--Mute)
S6	P5 Pin 19 (Gnd)
S7	P5 Pin 14 (+9V--SW)

Cut the unused wires (S2, red and S3, orange).

Figure 8 T800-02 To T700 Mounting Details
3. Trim the component legs on the back of the T800-02 PCB, so that once the PCB is in place the legs will not short circuit against the T700 receiver shield or chassis.
4. Cut the double sided foam tape into three pieces of equal size. If the T700 is fitted with a 600 Ohm interface PCB, discard one piece of tape and position the remaining two pieces on the bottom of the T800-02 PCB. The two strips of tape should be flush with the PCB edges, and run in the direction shown by the arrows in Figure 8.

If the T700 is not fitted with a 600 Ohm interface PCB, stick two of the lengths of tape together so that they can be used as a double thickness. Position the tape on the bottom of the T800-02 PCB as shown in Figure 8, with the double thickness on the side that will be closest to the unfolded control PCB.
5. Position the T800-02 carefully so that none of its components come into contact with parts on the closed control PCB. Avoid contact with the 32 V regulator coil by placing the CTCSS PCB hard up against the chassis support flange indicated in Figure 8, and as close as possible to the centre line of the radio.

Note: Ensure that the T800-02 does not come into contact with the 600 Ohm interface PCB fixing screw indicated in Figure 8.

The M3x8 Taptite screws provided in the kit are for fitting a T800-02 PCB to a T800 Series I radio, and can be discarded.

When fitting the T800-02 PCB to a T700 that is equipped with the Talk Through option, the following modifications are necessary to restrict Talk Through to valid CTCSS only:

- Cut the track between R1 (10k Ω) and the connector (PL7) on the Talk Through PCB.
- Connect a wire between pad S12 on the T800-02 and the connectorside leg of R1.

Programming

Refer to Table 1 and Figure 9.
The DIP switch codes for standard EIA tones are set out in Table 1 on the following page. Programme the DIP switch (SW1) on the T800-02 PCB as shown in Figure 9.

Figure 9 DIP Switch Programming

Non-standard Tones

1. Calculate " n ":
$\mathrm{n}=$
$\frac{40960}{\text { tone frequency required }}$
2. Round off to the nearest whole number.
3. Convert to binary code and programme the DIP switch (LSB to " 1 " switch and MSB to " 10 " switch) as shown in Figure 9.

Example:	tone frequency $=67.0 \mathrm{~Hz}$	$\frac{40960}{67}=611.343$
	therefore $\mathrm{n}=611$	
	convert n to binary code:	

n	$\mathrm{n} \div 2=$	Remainder (Switch Position)	Switch Number	Significance
611	305	1	1	LSB
305	152	1	2	
152	76	0	3	
76	38	0	4	
38	19	0	5	
19	9	1	6	
9	4	1	7	
4	2	0	8	
2	1	1	9	
1	0		10	MSB

EIA Frequency (RS220)	Actual	Error		Switch Code ${ }^{\text {a }}$
	Frequency	\%	n	MSB LSB
				10987654321
67.0	67.04	+0.06	611	1001100011
71.9	71.86	-0.06	570	1000111010
77.0	76.99	-0.01	532	1000010100
82.5	82.58	+0.10	496	01111110000
88.5	88.47	-0.04	463	011110011111
94.8	94.81	+0.02	432	01100110000
100.0	99.90	-0.10	410	01110011010
103.5	103.43	-0.06	396	01110001100
107.2	107.23	+0.02	382	0110111110110
110.9	111.00	+0.10	369	010011100001
114.8	114.73	-0.06	357	01001100101
118.8	118.72	-0.06	345	010010110001
123.0	123.00	0.0	333	011010001101
127.3	127.20	-0.08	322	$\begin{array}{llllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$
131.8	131.70	-0.07	311	01100110111
136.5	136.53	+0.02	300	01000101100
141.3	141.24	-0.04	290	01000100010
146.2	146.29	+0.06	280	011000110000
151.4	151.14	-0.17	271	$\begin{array}{lllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$
156.7	156.93	+0.15	261	01100000101
162.2	161.90	-0.19	253	001111111001
167.9	167.87	-0.02	244	00111110100
173.8	173.56	-0.14	236	00111001100
179.9	179.65	-0.14	228	00111100100
186.2	186.18	0.0	220	00111011100
192.8	193.21	+0.20	212	00111010100
203.5	203.78	+0.14	201	00111001001
210.7	211.13	+0.20	194	0001110000010
218.1	217.87	-0.10	188	001101111100
225.7	226.30	+0.27	181	00100110101
233.6	234.06	+0.20	175	001101011111
241.8	242.37	+0.23	169	00010010101001
250.3	249.76	-0.22	164	001101000100

a. " $0 "=$ on, " $1 "=$ off.

Table 1

Remote Programming Of Encode/Decode Tones

If remote tone programming is required, a 10 -wire loom and socket is provided in the kit for wiring to an additional connector at the rear of the T800 Series I or T700 radio. Fit the socket to PL-1 on the T800-02 PCB and solder the wires to the connector. When using the remote cable, programme the DIP switch (SW1) on the T800-02 to all " 1 "s (off).

The T800 Series I can also be remotely programmed using a T800-07 multi-channel memory PCB in place of the standard T800-10 PCB. As well as allowing remote programming, the T800-07 PCB automatically defeats the CTCSS on any channels that are not programmed with a CTCSS tone (provided the programming software used is PGM800 v2.01 or later, and the CTCSS PCB is IPN 225-01202-02 or later.)

For instructions on fitting the T800-07 PCB, see TI-356.

2 Channel CTCSS Operation On A Single Channel Using 2 T800-02 Units

Refer to Figure 10. This configuration is available only when the T800-02 is fitted to a T800 Series I radio.

The transmitter is keyed only if the receiver gate is open and one correct tone is present; if two simultaneous tones are received, the gate out 2 of T800-02 No. 2 is inhibited.

The encoded tone output to the transmitter is the same frequency as the received and decoded tone.

A decode on one unit inhibits the decoding of the other and switches off the encode tone.

Each tone level can be set independently by receiving the correct input tone for each decoder or by utilising the defeat line of each decoder.

Figure 10 Dual T800-02 Connection Details
Both T800-02 units can be mounted side by side above the audio processor on the lugs provided (refer to Figure 1). The wiring loom for remote programming the encode/ decode tones can also be installed for both units by mounting one T800-02 above the line transformer right side up, and the other upside down.

The Tx tail time should not be used unless measures are taken to delay the removal of the inhibits at S11 during the tail time. Refer to Customer Support, Radio Systems Division, Tait Electronics, Christchurch, New Zealand for assistance with these modifications. If these measures are not taken, CTCSS tones will be transmitted from both PCBs during the tail time.

Adjustments

T700 Series

Adjust RV1 on the T800-02 PCB to provide approximately 10% of the maximum system deviation (e.g. if maximum system deviation is $\pm 5 \mathrm{kHz}$, adjust RV1 for $\pm 500 \mathrm{~Hz}$ deviation).

T800 Series I

Refer to Figure 2.

Note: \quad For narrow band sets use half the stated deviation levels.

1. Set the receiver RF mute pot (RV100) to the required threshold (e.g. 20dB sinad).
2. Set the receiver line level pot (RV102) for -10 dBm using a steady received RF signal at approximately -70 dBm .
3. Programme the required CTCSS tone.
4. Adjust RV1 on the T800-02 PCB to provide $\pm 600 \mathrm{~Hz}$ (nominal) tone deviation of transmitter modulation.

5. Transmitter Deviation

This must be reset so that the maximum deviation for both audio and CTCSS does not exceed $\pm 4.7 \mathrm{kHz}$.
Adjust the transmitter line sensitivity pot (RV100) fully clockwise.
Adjust the transmitter deviation pot (RV106) to set the maximum total deviation of the CTCSS tone and 1 kHz AF to $\pm 4.7 \mathrm{kHz}$.

Sweep the audio frequency from 100 Hz to 4 kHz and ensure that the maximum deviation does not exceed 4.7 kHz .

Readjust RV106 if necessary.
Readjust the line sensitivity for $\pm 3 \mathrm{kHz}$ deviation.

6. Transmitter Tail Timer

The transmitter tail timer must be set up if reverse phase burst is required.
Adjust RV202 to obtain the required tail setting (approximately 80 ms) as follows:

- Observe the "Tx Reg" line of the transmitter with an oscilloscope and trigger on the rising edge of the "Tx Key" (scope: $2 \mathrm{~V} /$ div, $20 \mathrm{~ms} /$ div, normal trigger).
- Adjust RV202 fully clockwise and then adjust anticlockwise while keying the transmitter on/off until the required tail is obtained.
- Alternatively, change R245 from 1 k 5 to 22 k and adjust RV202 fully clockwise.

Testing (T800 Series I Only)

Test Equipment Required

frequency counter	modulation monitor
RF signal generator	sinadder
audio level meter	50 ohm dummy load to suit transmitter
2 audio generators \& combining pad (refer to Figure 12)	

Receiver Performance Tests

Refer to Figure 2 and Figure 11.
Note: \quad For narrow band sets use half the stated deviation levels.

Figure 11 D-Range Connections (T800-02 Mounted In Receiver)

1. Set up the T800 Series I receiver and transmitter as detailed in the appropriate Service Manual and then fit the T800-02.
2. Set up the test equipment as shown in Figure 12.

Figure 12 Receiver Test Set-Up

3. To Check Decoder Operation

Set the RF signal generator output to -70 dBm .
Modulate the generator with the audio oscillator at a level to give $\pm 3 \mathrm{kHz}$ deviation at 1 kHz (CTCSS generator set to zero output).
Monitor the CTCSS generator frequency and increase the level until the total deviation is $\pm 3.5 \mathrm{kHz}$ ($\pm 500 \mathrm{~Hz}$ CTCSS deviation).
Adjust the CTCSS generator to a programmed tone frequency.
Check that the receiver gate is open, the gate LED is on and Tx key is low.
4. To Check The Opening Sinad

Adjust the receiver gate sensitivity (RV100) fully clockwise.
Reduce the RF signal level to -110 dBm .
Observe the sinad meter and reduce the RF level until the receiver mute closes.
Slowly increase the signal level until the receiver mute just opens and stays open.
Check that the sinad is less than 6 dB .
5. To Check The CTCSS Tone Output Level, Frequency \& Distortion

Set the RF signal generator as in 3 .
Measure the regenerated tone frequency level and distortion at the tone output.
Adjust RV1 (T800-02) and check that the tone level can be adjusted from 0 to at least 1 V rms.
Check that the tone frequency is correct and the distortion is less than 5%.

6. To Check The High Pass Filter

Set the signal generator output to -70 dBm and modulate with 1 kHz and CTCSS (i.e. $\pm 3 \mathrm{kHz}$ plus $\pm 500 \mathrm{~Hz}$).

Note the line level (-10 dBm).
Reduce the 1 kHz generator to zero output and measure the difference in level between the 1 kHz and the CTCSS tone.
Check that this is at least 26 dB below the 1 kHz level (26 dB de-emphasised, 33 dB flat response).

Transmitter Performance Tests

Refer to Figure 3 and Figure 13.
Note: \quad For narrow band sets use half the stated deviation levels.

1. Set up the T800 Series I transmitter and receiver as detailed in the appropriate Service Manual and then fit the T800-02.

Figure 13 D-Range Connections
(T800-02 Mounted In Exciter)
2. Set up the test equipment as shown in Figure 14.

Figure 14 Transmitter Test Set-Up

3. To Check Decoder Operation

Set the RF signal generator output to -70 dBm .
Modulate the generator with the audio oscillator at a level to give $\pm 3 \mathrm{kHz}$ deviation at 1 kHz (CTCSS generator set to zero output).

Monitor the CTCSS generator frequency and increase the level until the total deviation is $\pm 3.5 \mathrm{kHz}$ ($\pm 500 \mathrm{~Hz}$ CTCSS deviation).

Adjust the CTCSS generator to a programmed tone frequency.
Check that the transmitter is now keyed and the key LED is on.
4. To Check The Opening Sinad

Adjust the receiver gate sensitivity (RV100) fully clockwise.
Reduce the RF signal level to - 110 dBm .
Observe the sinad meter and reduce the RF level until the transmitter key is removed.

Slowly increase the signal level until the transmitter is keyed and stays keyed.
Check that the sinad is less than 6 dB .
5. To Check The CTCSS Tone Output Level \& Distortion

Set the RF signal generator as in 3 .

Measure the regenerated tone frequency and level at the tone output.
Adjust RV1 (T800-02) and check that the tone level can be adjusted from 0 to at least 1 V rms.

Check that the tone frequency is correct and the distortion is less than 5%.
Adjust RV1 to give $\pm 500 \mathrm{~Hz}$ deviation at the transmitter output (key the transmitter via carrier only; push button SW101).

6. To Check The High Pass Filter

Set the signal generator output to -70 dBm and modulate with 1 kHz and CTCSS (i.e. $\pm 3 \mathrm{kHz}$ plus $\pm 500 \mathrm{~Hz}$).

Note the level at the speech output.
Reduce the 1 kHz generator to zero output and measure the difference in level between the 1 kHz and the CTCSS tone.

Check that this is at least 26 dB below the 1 kHz level (26 dB de-emphasised, 33 dB flat response).

Specifications

General

Frequency Range	.. 67 to 250.3 Hz
Number Of Tones	..single frequency
Supply Current .. 15 mA	
Supply Voltage	.. 9 V (from T800 Series I receiver or transmitter)
Operating Temperature Range	.. $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Dimensions	.. $52 \times 58 \mathrm{~mm}$
Height	.. 10 mm
Decoder	

Audio Input Level	.. 20 mV rms to 2 V rms
Tone Squelch Opening	.. better than 6 dB sinad (5 dB typical)
Tone Detect Bandwidth:	
\quadMinimum .. $\pm 2 \mathrm{~Hz}$ Maximum . $\pm 4 \mathrm{~Hz}$ Response Time Encoder/Decoder .. 150 ms (120ms typical) (from tone applied to tone out [90\% level])	

.. 400 Hz to $3.5 \mathrm{kHz}+1.0,-1.5 \mathrm{~dB}$ rel. to 1 kHz
Speech Filter Tone Band Attenuation:
200 Hz to 250.3 Hz .. better than 19 dB
150 Hz to 200 Hz .. better than 30 dB
67 Hz to 150 Hz
.. better than 45 dB

Encoder

Transmit Tones:
Level
.. 1.0 V rms nominal

Flatness
.. 1dB ripple
Tone Modulation

Tone Distortion:
67 Hz to 100 Hz .. $<5 \%$
100 Hz to 250.3 Hz .. $<2.5 \%$
Frequency Error From EIA Tones
.. 0.5 to $\pm 1.0 \mathrm{kHz}$ for $\pm 5 \mathrm{kHz}$ full rated deviation (recommended level is $\pm 0.6 \mathrm{kHz}$)

Circuit Operation

Clock Signal Generator

A 32.768 kHz crystal oscillator provides a reference to the phase input comparator input A of the phase locked loop (IC1). The output of the VCO is returned to the phase comparator input B via a ten times divider. In this way the VCO oscillates at ten times the crystal frequency $(327.68 \mathrm{kHz})$.

Programmable Dividers

IC4 and IC5 form a programmable divide-by-" N ". This is capable of 12-bit binary programming, although only 10 bits are used. Programming is achieved by setting the 10bit DIP switch (SW1), or remotely with a T800-07 multichannel EPROM PCB.

Level Translator

A level translator is used on the output of the programmable divider to convert +5 V logic to the +9 V logic required by IC $6 \&$ IC 7 .

No-Tone Defeat Operation

This allows remote control of the T800 Series I base station equipment when a CTCSS tone is not required. Defeat operation can be activated by providing a high frequency output of about 164 kHz from the programmable divider, IC4 and IC5. This is achieved by selecting divide-by-two on the bit switch, SW1, or via the remote lines to the T800-07

EPROM. A divide-by-two output from the T800-07 occurs when the EPROM is programmed by PGM800 without the selection of a CTCSS tone (PGM800 V2.01, after April 1991 only).

R80, C39 and Q6 act as an integrator to detect the high frequency output from IC4 and IC5 and pull the defeat line, S9, low. The resultant 20 kHz tone is prevented from appearing at the CTCSS tone output, S4, by the CTCSS filter, IC9.

Divide-By-Eight Decoder (Sine Wave Synthesiser)

IC6 is a divide-by-eight decoder. The outputs at Q1 to Q5 are progressively shifted 45 at each stage, and ripple through the counter with each clock pulse. Q4 is tied to the data input to provide a divide-by-eight function. The outputs are now at the CTCSS tone frequency. Q1 and Q3, which are in quadrature (90), set the centre frequency of the commutating filter.

CTCSS Tone Encoder

Outputs Q1, Q2 \& Q3 from IC6 are fed into the inputs of three exclusive OR gates (IC10). The other inputs to these gates are common and connect to gate output 2. A change at gate output 2 produces a phase inversion at the EXOR outputs, i.e. when gate output 2 releases, the encoder tone phase inverts for a short period (approx. 200ms) then returns to its original phase (RC time constant C37, C38 \& R72).

The outputs of the exclusive OR gates are weighted and summed by resistors R37, R38 \& R46. This signal is then filtered by a 3-pole active low pass filter. RV1 adjusts the level of tone output (tone deviation), speech high pass filter, tone low pass filter and the limiter.

Receiver or line audio is fed into the speech+tone input and is filtered for speech by two cascaded 3-pole active filters. The combined cut-off frequency is $400 \mathrm{~Hz}-1.5 \mathrm{~dB}$. This effectively removes the CTCSS tone from the speech.

The CTCSS tones are filtered to remove speech by a 3-pole active filter with a cut-off frequency of $250 \mathrm{~Hz}-1 \mathrm{~dB}$.

The filter output is amplified and limited and then applied to the commutating filter and synchronous detector.

The limiter also provides a bandpass function from 60 to 280 Hz which reduces the effects of DC transients at the speech+tone input.

Commutating Filter \& Synchronous Detector

The commutating filter is a fixed bandwidth filter of $\pm 2.8 \mathrm{~Hz}$. IC7 is a triple changeover switch. The input signal from the limiter is sampled via R35, C20 \& C21 and R33, C18 \& C19.

The sampling time and phase is obtained from the divide-by-eight decoder (IC6). When the sampling is the same frequency as the incoming tone frequency, a net charge is developed on each of the sampler capacitors. The charges which are in quadrature with respect to each other are then summed and the original signal is approximately reconstructed.

The limited input signal is also applied to a third changeover switch of IC7 which switches the inputs to IC9 pin 5 and R47.

When the reconstructed signal is negative (relative to bias voltage), the amplifier has positive gain, and when the signal is positive, it has negative gain. This produces inverted full wave rectification at IC9 pin 7 which is filtered by R50 and C28. D2 forms a positive clamp and Q2 a negative clamp to limit the excursions of the detected signal. This reduces the effect of ripple which occurs due to the small frequency difference that may exist between sampling signals and incoming tones.

Threshold Detector

The rectified and filtered output is fed into a comparator with a threshold of approximately 0.35 V (set by R53).

When a tone is detected, the output at IC9 pin 14 is "low".

Gate Output Logic

Two outputs are provided to either key a transmitter (gate output 2) or to mute a receiver (gate output 1) and an inhibit is provided if the received signal is not strong enough (Rx gate input). Defeat logic is also provided which enables the tone decoder to be bypassed for tests, etc. (i.e. earthing effectively removes decoder operation).

Defeat	Rx Gate Input	Decoded Tone	GateOut 2	GateOut 1	Rx Mute	Tx
O.C	0	0	S.C	O.C	open	keyed
O.C	0	1	O.C	S.C	closed	off
O.C	1	0	O.C	S.C	closed	off
O.C	1	1	O.C	S.C	closed	off
0	0	0	S.C	O.C	open	keyed
0	0	1	S.C	O.C	open	keyed
0	1	0	O.C	S.C	closed	off
0	1	1	O.C	S.C	closed	off

S.C = short circuit, O.C = open circuit

Control lines XOR, inhibit in and inhibit out, are not used in normal operation but are provided for use with two T800-02 units for dual tone operation (refer to page 9).

Squelch Tail Elimination

When gate out 2 is released, the CTCSS tone output is inverted by the exclusive OR gates for a short period and then returns to its original phase (RC time constant formed by C37, C38 and R72 at approx. 200ms). The T800 Series I transmitter tail time must be set for an appropriate time of less than 200 ms (normally approx. 80 ms ; refer to the appropriate T800 Series I Service Manual). This causes a reverse phase burst of CTCSS tone on the transmitter tail which causes mobile receivers to mute faster than normal, thus removing most of the squelch noise burst.

Reverse Phase Burst

This function can be disabled by removing R71 (zero Ohm link resistor) from the T800-02 PCB. Note that this will result in the loss of the +9 V pull-up to the output at S 8.

Parts List (IPN 225-01202-03)

Ref	IPN	Description	Ref	IPN	Description
C1	015-22470-01	CAP CER 0805 CHIP 47P 5\% NPO 50V	R22	036-14680-00	RES M/F 0805 CHIP 6K8 5\%
C1A	015-21820-01	CAP CER 0805 CHIP 8P2 +/-0.25P NPO 50V	R23	036-16390-00	RES M/F 0805 CHIP 390K 5\%
C2	015-06100-08	CAP CER 1206 CHIP 100N 10\% X7R 50V	R24	036-14100-00	RES M/F 0805 CHIP 1K 5\%
C3	015-23100-01	CAP CER 0805 CHIP 100P 5\% NPO 50V	R25	036-13680-00	RES M/F 0805 CHIP 680E 5\%
C4	016-07100-01	CAP ELECT 6X4MM CHIP 1M $20 \% 16 \mathrm{~V}$	R26	036-14270-00	RES M/F 0805 CHIP 2K7 5\%
C5	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R27	036-16150-00	RES M/F 0805 CHIP 150K 5\%
C6	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R28	036-16150-00	RES M/F 0805 CHIP 150K 5\%
C7	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R29	036-16150-00	RES M/F 0805 CHIP 150K 5\%
C8	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R30	036-15100-00	RES M/F 0805 CHIP 10K 5\%
C9	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R31	036-16820-00	RES M/F 0805 CHIP 820K 5\%
C10	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R32	036-16330-00	RES M/F 0805 CHIP 330K 5\%
C11	016-08100-01	CAP ELECT 6X4MM CHIP 10M $20 \% 16 \mathrm{~V}$	R33	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C12	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50 V	R34	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C13	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R35	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C14	015-23220-01	CAP CER 0805 CHIP 220P 5\% NPO 50V	R36	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C15	015-05220-08	CAP CER 1206 CHIP 22N 10\% X7R 50 V	R37	036-15330-00	RES M/F 0805 CHIP 33K 5\%
C16	015-05470-08	CAP CER 1206 CHIP 47N 10\% X7R 50V	R38	036-15470-00	RES M/F 0805 CHIP 47K 5\%
C17	016-07100-01	CAP ELECT 6X4MM CHIP 1M 20\% 16V	R39	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C18	016-07100-01	CAP ELECT 6X4MM CHIP 1M 20\% 16V	R40	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C19	016-07100-01	CAP ELECT 6X4MM CHIP 1M 20\% 16V	R41	036-16150-00	RES M/F 0805 CHIP 150K 5\%
C20	016-07100-01	CAP ELECT 6X4MM CHIP 1M 20\% 16V	R42	036-16150-00	RES M/F 0805 CHIP 150K 5\%
C21	016-07100-01	CAP ELECT 6X4MM CHIP 1M 20\% 16V	R43	036-16150-00	RES M/F 0805 CHIP 150K 5\%
C22	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R44	036-14470-00	RES M/F 0805 CHIP 4K7 5\%
C23	015-05220-08	CAP CER 1206 CHIP 22N 10\% X7R 50V	R45	036-13680-00	RES M/F 0805 CHIP 680E 5\%
C24	015-05470-08	CAP CER 1206 CHIP 47N 10\% X7R 50V	R46	036-15470-00	RES M/F 0805 CHIP 47K 5\%
C25	015-23220-01	CAP CER 0805 CHIP 220P 5\% NPO 50V	R47	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C26	016-08100-01	CAP ELECT 6X4MM CHIP 10M 20\% 16V	R48	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C27	016-08100-01	CAP ELECT 6X4MM CHIP 10M $20 \% 16 \mathrm{~V}$	R49	036-16150-00	RES M/F 0805 CHIP 150K 5\%
C28	016-08100-01	CAP ELECT 6X4MM CHIP 10M 20\% 16V	R50	036-15100-00	RES M/F 0805 CHIP 10K 5\%
C29	016-08470-01	CAP ELECT SMD 6*4MM 47U 16V	R51	036-15100-00	RES M/F 0805 CHIP 10K 5\%
C30	016-08470-01	CAP ELECT SMD 6*4MM 47U 16V	R52	036-15100-00	RES M/F 0805 CHIP 10K 5\%
C31	015-25100-08	CAP CER 0805 CHIP 10N 10\% X7R 50V	R53	036-13680-00	RES M/F 0805 CHIP 680E 5\%
C32	015-05220-08	CAP CER 1206 CHIP 22N 10\% X7R 50V	R54	036-14680-00	RES M/F 0805 CHIP 6K8 5\%
C33	015-05220-08	CAP CER 1206 CHIP 22N 10\% X7R 50V	R55	036-17100-00	RES M/F 0805 CHIP 1M 5\%
C34	015-06100-08	CAP CER 1206 CHIP 100N 10\% X7R 50V	R56	036-15150-00	RES M/F 0805 CHIP 15K 5\%
C35	015-06100-08	CAP CER 1206 CHIP 100N 10\% X7R 50V	R57	036-15100-00	RES M/F 0805 CHIP 10K 5\%
C36	015-23680-08	CAP CER 0805 CHIP 680P 10\% X7R 50V	R58	036-16330-00	RES M/F 0805 CHIP 330K 5\%
C37	015-06100-08	CAP CER 1206 CHIP 100N 10\% X7R 50V	R60	036-14220-00	RES M/F 0805 CHIP 2K2 5\%
C38	015-06100-08	CAP CER 1206 CHIP 100N 10\% X7R 50V	R61	036-16100-00	RES M/F 0805 CHIP 100K 5\%
C39	015-25150-08	CAP CER 0805 CHIP 15N 10\% X7R 50 V	R62	036-16100-00	RES M/F 0805 CHIP 100K 5\%
			R63	036-15100-00	RES M/F 0805 CHIP 10K 5\%
D**	001-50012-05	(S) DIODE AI 1N4531 SI SMALL SIG	R64	036-16820-00	RES M/F 0805 CHIP 820K 5\%
D*	001-50012-05	(S) DIODE AI 1N4531 SI SMALL SIG	R65	036-14680-00	RES M/F 0805 CHIP 6K8 5\%
D1	001-10000-70	(S) DIODE SMD BAV70 DUAL SWITCH SOT-23	R66	036-15150-00	RES M/F 0805 CHIP 15K 5\%
		COMM CATHDE	R67	036-14220-00	RES M/F 0805 CHIP 2K2 5\%
D2	001-10000-70	(S) DIODE SMD BAV70 DUAL SWITCH SOT-23	R68	036-15180-00	RES M/F 0805 CHIP 18K 5\%
		COMM CATHDE	R69	036-15100-00	RES M/F 0805 CHIP 10K 5\%
			R70	036-16100-00	RES M/F 0805 CHIP 100K 5\%
IC1	002-10040-46	(S) IC 4046 SMD PHASE LOCK LOOP	R71	036-10000-00	RES M/F 0805 CHIP ZERO OHM
IC2	002-10040-18	(S) IC 4018 SMD DEVIDE BY N COUNTER	R72	036-17100-00	RES M/F 0805 CHIP 1M 5\%
IC3	002-10040-69	(S) IC 4069 SMD CMOS HEX INVERTERS	R73	036-17100-00	RES M/F 0805 CHIP 1M 5\%
IC4	002-10045-26	(S) IC 4526 SMD PRESET 4BIT DWN CNTR	R74	036-15470-00	RES M/F 0805 CHIP 47K 5\%
IC5	002-10045-69	(S) IC 4569 SMD DUAL 4BIT DWN CNTR	R75	036-15680-00	RES M/F 0805 CHIP 68K 5\%
IC6	002-10040-18	(S) IC 4018 SMD DEVIDE BY N COUNTER	R76	036-14470-00	RES M/F 0805 CHIP 4K7 5\%
IC7	002-10040-53	(S) IC 4053 SMD TRIPLE 2CH MULTI-PLEXR	R77	036-16100-00	RES M/F 0805 CHIP 100K 5\%
IC8	002-10003-24	(S) IC SMD 324 QUAD OP AMP SO14	R78	036-16100-00	RES M/F 0805 CHIP 100K 5\%
IC9	002-10003-24	(S) IC SMD 324 QUAD OP AMP SO14	R79	036-17100-00	RES M/F 0805 CHIP 1M 5\%
IC10	002-10040-70	(S) IC SMD HEF4070BT QUAD EXCL-OR SO-14	R80	036-15330-00	RES M/F 0805 CHIP 33K 5\%
PL1	240-00020-78	HEADER 10 WAY RT ANGLE PCB MTG AMP ULTREX	SW1	230-10010-20	SWITCH DIP SMD 10-WAY
			X1	274-00010-05	XTAL 32.768KHZ SUB MINI CLOCK C/W TEFLON
Q1	000-10008-17	(S) XSTR SMD BC817-25 NPN SOT-23 AF LO PWR			INS
Q2	000-10008-48	(S) XSTR SMD BCW60/BC848B215 NPN SOT23			
Q3	000-10008-48	(S) XSTR SMD BCW60/BC848B215 NPN SOT23 A		201-00030-01	WIRE \#1 T/C WIRE 7/0.2MM PVC BROWN
Q4	000-10008-57	(S) XSTR SMD BCW70/BC857-215 PNP SOT23 AF		201-00030-02	WIRE \#1 T/C WIRE 7/0.2MM PVC RED
Q5	000-10008-48	(S) XSTR SMD BCW60/BC848B215 NPN SOT23 AF		201-00030-03	WIRE \#1 T/C WIRE 7/0.2MM PVC ORANGE
Q6	000-10008-48	(S) XSTR SMD BCW60/BC848B215 NPN SOT23 AF		201-00030-04	WIRE \#1 T/C WIRE 7/0.2MM PVC YELLOW
				201-00030-05	WIRE \#1 T/C WIRE 7/0.2MM PVC GREEN
$\mathrm{R}^{* *}$	030-55120-20	RES FILM AI 12K 5\% 0.4W 4X1.6MM		201-00030-06	WIRE \#1 T/C WIRE 7/0.2MM PVC BLUE
R*	036-15100-00	RES M/F 0805 CHIP 10K 5\%		201-00030-07	WIRE \#1 T/C WIRE 7/0.2MM PVC VIOLET
R1	036-16100-00	RES M/F 0805 CHIP 100K 5\%		201-00030-08	WIRE \#1 T/C WIRE 7/0.2MM PVC GREY
RV1	042-15200-01	RES PRESET SMD 20K +-25\% 4X4.5X2.5MM 0.1W		201-00030-09	WIRE \#1 T/C WIRE 7/0.2MM PVC WHITE
		50 V		201-00030-10	WIRE \#1 T/C WIRE 7/0.2MM PVC BLACK
R2	036-16100-00	RES M/F 0805 CHIP 100K 5\%		225-01202-03	PCB T800 CTCSS DE-ENCODER
R3	036-16100-00	RES M/F 0805 CHIP 100K 5\%		240-04020-76	SKT RECEPTACLES WIRE CRIMP FOR ULTREX
R4	036-16100-00	RES M/F 0805 CHIP 100K 5\%			HOUSING
R5	036-16100-00	RES M/F 0805 CHIP 100K 5\%		240-04020-80	SKT HOUSING 10 WAY CORD MTG ULTREX
R6	036-16100-00	RES M/F 0805 CHIP 100K 5\%		303-50078-00	CLIP A4M2630 0.1MM SPRING WIRE CABLE
R7	036-16100-00	RES M/F 0805 CHIP 100K 5\%			CLAMP
R8	036-16100-00	RES M/F 0805 CHIP 100K 5\%		349-00020-32	SCREW TAPTITE M3X8MM PAN POZI BZ
R9	036-16100-00	RES M/F 0805 CHIP 100K 5\%		365-00011-38	LABEL STATIC WARNING YELLOW A4A315
R10	036-16100-00	RES M/F 0805 CHIP 100K 5\%		365-00011-54	LABEL WHITE RW1556/2 90*24MM
R11	036-16330-00	RES M/F 0805 CHIP 330K 5\%		369-00010-27	TIE CABLE NYLON 140*2.6MM
R12	036-18100-00	RES M/F 0805 CHIP 10M 10\%		399-00010-51	BAG PLASTIC 75*100MM
R13	036-15120-00	RES M/F 0805 CHIP 12K 5\%		399-00010-86	BAG STATIC SHIELDING 127X203MM
R14	036-14100-00	RES M/F 0805 CHIP 1K 5\%		410-00010-64	PKG HEADER CARD A3M2392
R15	036-15120-00	RES M/F 0805 CHIP 12K 5\%		419-80200-00	FITTNG INS T800-02 TO T800 SI
R16	036-12470-00	RES M/F 0805 CHIP 47E 5\%			
R17	036-14680-00	RES M/F 0805 CHIP 6K8 5\%			
R18	036-15270-00	RES M/F 0805 CHIP 27K 5\%			
R19	036-16390-00	RES M/F 0805 CHIP 390K 5\%			
R20	036-15270-00	RES M/F 0805 CHIP 27K 5\%			
R21	036-15100-00	RES M/F 0805 CHIP 10K 5\%			

Figure 15 T800-02 PCB Layout - Top Side (IPN 225-01202-03)

Figure 16 T800-02 PCB Layout - Bottom Side (IPN 225-01202-03)

Issuing Authority

$\begin{array}{ll}\text { This TN was issued by: } & \text { Andreas Becker } \\ & \text { RSD Customer Support Manager }\end{array}$

Publication History

Publication Date	Author
21st April 1999	D Reynolds

Amendment Record

Publication Date	Page	Amendment
21st April 1999	2 6 9 18 22	TI-346D republished as TN-566. - "Applicability" section added - "Introduction" paragraph 4 amended - "Note 2" added about T825 receivers - "Note 3" added about removing C19 - "T800-02 board" replaced with "Talk Through PCB" - "detected" replaced by "received" in paragraph 2 - Figure 10 corrected - address details in paragraph 7 updated - "Reverse Phase Burst" section added - "Issuing Authority", "Publication History" and "Amendment Record" sections added

