CONTENTS

GENERAL 2
SYSTEM SET-UP 2
OPERATING FEATURES 3
REALIGNMENT 10
CIRCUIT DESCRIPTION 16
SEMICONDUCTOR DATA 23
DESCRIPTION OF COMPONENTS 26
PARTS LIST 28
EXPLODED VIEW 34
PACKING 35
DISASSEMBLY FOR REPAIR 36
ADJUSTMENT 37
LEVEL DIAGRAM 48
PC BOARD VIEWS
CONTROL UNIT (X53-3780-XX) 49
TX-RX UNIT (X57-5390-10) 53
SCHEMATIC DIAGRAM 59
BLOCK DIAGRAM 67
TERMINAL FUNCTION 69
KNB-17A (Ni-Cd BATTERY) 70
KMC-25/26 (SPEAKER MICROPHONE) 71
KSC-19 (CHARGER) 72
KSC-20 (RAPID CHARGER) 72
KPG-36 (PROGRAMMING INTERFACE CABLE) 72
KRA-14 (HELICAL ANTENNA) 72
SPECIFICATIONS 73

CAUTION

When using an external power connector, please use with maximum final module protection of 10V

GENERAL/ SYSTEM SET-UP

INTRODUCTION

SCOPE OF THIS MANUAL

This manual is intended for use by experienced technicians familiar with similar types of commercial grade communications equipment. It contains all required service information for the equipment and is current as of the publication data. Changes which may occur after publication are covered by either Service Bulletins or Manual Revisions. These are issued as required.

ORDERING REPLACEMENT PARTS

When ordering replacement parts or equipment information, the full part identification number should be included. This applies to all parts : components, kits, or chassis. If the part number is not known, include the chassis or kit number of which it is a part, and a sufficient description of the required component for proper identification.

PERSONNEL SAFETY

The following precautions are recommended for personnel safety :

- DO NOT transmit until all RF connectors are verified secure and any open connectors are properly terminated.
- SHUT OFF and DO NOT operate this equipment near electrical blasting caps or in an explosive atmosphere.
- This equipment should be serviced by a qualified technician only.

SERVICE

This radio is designed for easy servicing. Refer to the schematic diagrams, printed circuit board views, and alignment procedures contained within.

NOTE

WE CANNOT guarantee oscillator stability when using channel element manufactured by other than KENWOOD or its authorized agents.

FCC COMPLIANCE AND TYPE NUMBERS

Model	Type acceptance number	Frequency range	Compliance
TK-290	ALH21893110	$136 \sim 174 \mathrm{MHz}$	Parts 22,74,80,90

Unit Model \& destination		X57-539X-XX	X53-378X-XX		Frequency range	Remarks	Charger	Battery	Antenna	Keypad
		0-10	0-10	0-11						
TK-290	K	\bigcirc	\bigcirc		136~174MHz	$\begin{aligned} & \text { IF1 }: 44.85 \mathrm{MHz} \\ & \text { LOC : } 45.305 \mathrm{MHz} \end{aligned}$	OP	OP	OP	-
	K2	\bigcirc		\bigcirc			OP	OP	OP	\bigcirc

SYSTEM SET-UP

OPERATING FEATURES

1. Getting Acquainted

1-1. Key Descriptions

(1) TX/Busy/Battery low indicator

Lights red while transmitting. Lights green while receiving. Flashes red when the battery power is low while transmitting; replace or recharge the battery.
Note : This indicator can be disabled by your dealer.
(2) Power switch/Volume control

Turn clockwise to switch ON the transceiver. Turn counterclockwise, until a click sounds, to switch OFF the transceiver. Rotate to adjust the volume level.
(3) Selector

Rotate this control to activate its programmable function (Page 8).
(4) Toggle switch

Switch the toggle position to activate its programmable function (Page 8).
(5)

Top 1
(6) Top 2Orange
(8) Side 1
(9)

Side 2PTT (Push-To-Talk) switch
Press this switch, then speak into the microphone to call a station.
(11) DTMF keypad (keypad models only)

Press the keys on the telephone keypad to send DTMF tones.
(12) Universal connector

Connect the external speaker/microphone (optional) here. Otherwise, keep the supplied cover in place.

1-2. Display

(1) Alphanumeric display

Displays the operating group or channel number, or the group or channel name. When making a DTMF or 2 Tone call, the display will alternate between CALL and the channel. Also displays various menu functions.
(2) 7 Segment display

Displays the operating group or channel number. Also displays tA (Talk Around), P1 (Priority1), P2 (Priority2), or HC (Home Channel); depending on the function being used.
(3) A (Add) indicator

Appears when a channel is added to the scanning sequence.
(4) SCN (Scan) indicator

Appears when Scan mode is active.

MON (Monitor) indicator

Appears when the monitor function is active.
(6) LO (Low) indicator

Appears when low power is selected.
(7) OPT indicator

Appears when Operator Selectable Tone is enabled.

(8) AUX (Auxiliary) indicator

Appears when Aux is ON. Appears and blinks when the optional scrambler board is enabled.

Note: The alphanumeric and 7 segment displays can be inverted if a PF key or the toggle switch is programmed with Invert Display (Page 8).

OPERATING FEATURES

2. Scan Operating

2-1. Scan Types

- Single Group Scan

You can scan all valid (ADD) channels in the displayed group that can be selected with the group selector.

- Multiple Group Scan

You can scan all valid (ADD) channels in the all valid (ADD) group.

2-2. Scan Start Condition

One or more non-priority channels must be added to all channels that can be scanned. The transceiver must be in normal receive mode (PTT off).

When you activate the key or the toggle switch (to right position) programmed to the scan function, the scan starts. The scan icon "SCN" lights and "SCAN" or revert channel (programmable) is indicated on 7-digit alphanumeric display.

2-3. Scan Stop Condition

The scan stops temporarily if the following conditions are satisfied.

1) A carrier is detected, then signalling matches on channels for which receive the signalling is set by the programming software.
2) A carrier is detected on the channel for which receiving signalling is not set by the programming software or when the monitor (signalling cancel) function is activated.

2-4. Scan Channel Types

1) Priority channel 1 is the most important channel for the scan, and always detects a signal during scan and when the scan stops temporarily.
2) Priority channel 2 is the next important channel for the scan, and always detects a signal during scan and when the scan stops temporarily at a channel other than priority channel 1.
3) Non-priority channels detects a signal during scan. For the channels that can be selected with the group or channel selector when the scan does not occur, adds an indicator "A" lights.

2-5. Priority Channel Setting

Priority channels 1 or 2 can be set as follows with the programming software (KPG-38D).

1) Specify priority channels 1 or 2 as fixed priority channels.
2) Make selected channels, priority channels.
3) Operator delectable

Specify the initial channel before the operator changes it.

2-6. Scan Type According to the Priority Channel

1) When no priority channels are set: Only the non-priority channels are scanned.
If a non-priority channel stops temporarily, it stops until there is no signal on the channel.
2) When one priority channel is set : Either priority channel 1 or 2 is scanned.
If a non-priority channel stops temporarily, a priority channel signal is detected at certain intervals.
If a priority channel stops temporarily, it stops until there is no signal on the priority channel.
3) When two priority channels are set: The non-priority channel, priority channels 1 and 2 are scanned.
If a non-priority channel stops temporarily, priority channel 1 and 2 signals are detected at certain intervals.
If priority channel 2 stops temporarily, the priority channel 1 signal is detected at certain intervals.
If priority channel 1 stops temporarily, it stops until there is no signal on priority channel 1 .

2-7. Revert Channel

The revert channel is used to transmit during scanning and set by the programming software (KPG-38D).

1) Priority 1

The transceiver reverts to the priority channel 1.
2) Priority 1 with talkback

The transceiver reverts to the priority channel 1.
If you press PTT during a resume timer (dropout delay time, TX dwell time) or calling, you can transmit on current channel to answer to the call however revert channel is set to priority channel 1.
After resume time, scan re-starts and transmission channel is return to priority channel 1.
3) Priority 2

The transceiver reverts to the priority channel 2.
4) Priority 2 with talkback

The transceiver reverts to the priority channel 2.
If you press PTT during resume timer (dropout delay time, TX dwell time) or calling, you can transmit on current channel to answer to the call however revert channel is set to priority channel 2.
After resume time, scan re-starts and transmission channel is return to priority channel 2.
5) Selected channel

The transceiver reverts to the channel before scanning or the channel that you changed during scan.
6) Last called channel

The transceiver reverts to the last called channel during the scan.
7) Last used channel

The transceiver reverts to the last used (transmitted) channel during scan. "Last used" revert channel includes talkback function.
8) Selected with talkback

The transceiver reverts to the channel before scanning or the channel that you changed during scan.

2-8. Scan End

When you reactivate the key or the toggle switch (to left position) programmed to the scan function during scan mode, the scan ends.

The scan icon "SCN" and "SCAN" or revert channel (programmable) display goes off.

OPERATING FEATURES

2-9. Temporarily Delete/Add

It is possible to delete or add channel temporarily during scan. When scan stops on unnecessary channel for example by interference of the other party, activate the delete/ add function (for example press the key), then that channel is deleted temporarily and scan re-start immediately.

When you would like to add the deleted channel temporarily to scan sequence, select the desired (deleted) channel during scan, activate the delete/add function (for example press the key) before scan re-start.

That channel is added temporarily to scan sequence. The temporary deleted or added channels are returns to pre-set delete/add, when the transceiver exits from scan mode.

3. Optional Features

You can use these features using the programming software (KPG-38D).

3-1. Alphanumeric Display (Group/Channel Name)

The programming software (KPG-38D) enables you to set the alphanumeric display for group/channel name. The total text size of group and channel name are 7-digits.

For example, If you set 2-digits for group name, then you can use 5 -digits for channel name. The characters can be used as shown in Figure 1.

Fig. 1

3-2. Beep Tones

The beep tones (power on tone, control tone, warning tone, alert tone) are individually programmable to the fixed level 0 to 31 or follow the mechanical volume position.

3-3. Minimum Volume

The minimum volume is programmable (0 to 31). The transceiver remains the minimum volume level however the mechanical volume position is set to zero.

3-4. BCL (Busy Channel Lockout) Override

You can transmit in spite of Busy Channel Lockout situation. For example : To make an emergency voice call.

To transmit under busy channel lockout situation, press PTT once more within approx. 500 ms after the PTT release.

3-5. Selective Call Alert LED

You can select whether or not the LED on the transceiver flashes in an orange color when Selective call was occurred.

3-6. Battery Warning

This transceiver has battery warning feature. If the low voltage is detected during transmission, the transceiver warns it by flashing red "LED".

Then more low voltage is detected during transmission, the transceiver stops transmission and warns it by flashing red "LED" and beep.

Please notice "standard" for the battery exchange, charging time by flashing red LED and beep.

3-7. Busy LED

You can program the enable or disable the busy "LED" function when a carrier is detected. "Disable" saves battery life.

3-8. TX LED

You can program the enable or disable the transmission "LED" function.

3-9. 2-Digit 7-Segment Display

You can use 2-digit 7-segment the display to display the channel number or group number. It is useful when the main (7-digit 13-segment) display indicates group or channel name.

3-10. Invert Display

Main (7-digit 13-segment) display and sub (2-digit 7-segment) display can be programmed to invert display.

It is easy to read the display when the operator suspended the transceiver on a waste belt. The operator also can change the display between normal and invert using key. Refer the invert display function of key function.

3-11. Emergency Channel Display

The transceiver can be programmed to display "EMERGENCY" channel name when it is in emergency mode.

If you set to "off" by KPG-38D the transceiver shows selected group/channel/status before entering to the emergency mode however the transceiver is in an emergency mode.

3-12. Clear to Transpond

The transceiver waits the transpond of 2-Tone/DTMF if channel is busy until channel open. This feature prevents the interference to other party.

3-13. External Speaker

It can be selected if the receive sound is made by SP-Mic SP or the main body SP at a SP-Mic mount.

OPERATING FEATURES

3-14. Mode (Enable/Disable)

The transceiver has many special modes mainly for maintenance.

Self Programming mode

- Panel Test mode
- Clone mode
- Firmware Programming mode

It is possible to set enable/disable for each mode. We recommend to set these mode to Disable after set up to save contents.

3-15. ID
The transceiver is capable to have ID. The format is DTMF. The timing that the transceiver sends ID is programmable.

Connect ID : Connect ID is send on beginning of transmission.
Disconnect ID : Disconnect ID is send on end of transmission.
Both: Connect ID is send on beginning of transmission and disconnect ID is send on end of transmission.
Off : Sending ID function is disabled.
There is also "PTT ID" setting for each channel. Refer "PTT ID" of channel feature.

3-16. OST (Operator Selectable Tone)

The transceiver is capable to have "OST" function and 16 tone pair (OT/DQT) with max 7-digit name for each tone pair.

- "OST" Back Up

The transceiver is programmable the selected "OST" code is memorized or not. If you set to Disable (no memorized), the "OST" function always starts at "off".

- Direct "OST"

It is possible to call "OST" number directory using keypad. In this case, keypad is used for "OST", then "DTMF Auto PTT" "DTMF Auto Dial" functions by keypad are not usable.

3-17. Radio Password (Keypad Model Only)

The radio password prevent unauthorized users operation. Every time the power on, transceiver is locked and unusable until entering correct password.

Enter pre-programmed password by FPU and [\#] key causes the transceiver unlocked.

3-18. Data Password (Keypad Model Only)

The data password prevents unauthorized reading of the programmed transceiver data by FPU. Enter pre-programmed password in FPU reading process. This password also protects the clone.

Enter pre-programmed password by FPU and [\#] key to clone.

4. Group Features

You can use these features using the programming software (KPG-38D).

4-1. "TOT" (Time-Out Timer)

The transceiver has the "TOT". This parameter selects the period of time users can continuously transmit.

When the selected period passes, the transceiver generates an warning tone and stops the transmission.

4-2. "ТОТ" Pre-Alert

The transceiver has "TOT" pre-alert timer. This parameter selects the time at which the transceiver generates "TOT" pre-alert tone before "TOT" is expired.
"TOT" will be expired when the selected time passes from a TOT pre-alert tone.

4-3. "TOT" Re-Key Time

The transceiver has "TOT" re-key timer. This timer is the time you can not transmit after "TOT" exceeded. After "TOT" re-key time expired you can transmit again.

4-4. 'TOT" Reset Time

The transceiver has "TOT" reset timer. This timer is the minimum wait time allowed during a transmission that will reset the "TOT" count.
"TOT" reset time causes the "TOT" to continue even after PTT is released unless the "TOT" reset timer has expired.

4-5. Group Delete/Add

The transceiver can set the delete/add in each group. If "Delete" is selected, the transceiver does not scan the deleted group in multi group scan.

4-6. Battery Save

This is the automatic battery saver during a standby mode operation. The receiver circuit is repeated on and off to conserve the battery life.

4-7. Signalling

Signalling "AND/OR" sets the audio unmute condition for any channel programmed with the option signalling (2-Tone) DTMF).

AND : "AND" requires both the valid option signalling and the programmed QT/DOT to be received for audio to unmute (and initiate an option signalling decode alert).
OR : "OR" requires either the valid option signalling or the programmed QT/DOT to be received for audio to unmute (an option signalling decode alert is only initiated if the proper option signalling is decoded).

OPERATING FEATURES

5. Channel Features

You can use these features using the programming software (KPG-38D).

5-1. Option Signalling

The transceiver is programmable to the option signalling (2-Tone decode program 1, 2-Tone decode program 2, 2Tone decode program 3, DTMF decode) to each channel. It is useful to receive an individual call.

Receive format is selectable "AND" or "OR" with OT/DQT for each group. The radio response of option signalling is programmable "(Call) Alert tone" or "Transpond" for each option signalling (2-Tone decode program 1, 2-Tone decode program 2, 2-Tone decode program 3, DTMF).

5-2. PTT ID

PTT ID provides a DTMF ANI to be sent with every time PTT (connect ID at beginning of transmission, disconnect ID at end of transmission, or both).

You can program PTT ID "on" or "off" for each channel. The contents of ID are programmed for each transceiver.

5-3. Busy Channel Lockout

Transmission is inhibited when the channel is busy. It is able to set this feature "Yes" or "No" for each channel.

5-4. Beat Shift

This is the feature that the microprocessor shifts its system clock frequency slightly to prevent the receive interference. This transceiver can program this feature "Yes" or "No" for each channel.

5-5. TX Power

You can set the transmission power "High" or "Low" for each channel. The each power setting is tuned at factory.

However, you can re-tune the power, using PC Tuning Mode of KPG-38D.

5-6. Wide/Narrow

You can set the occupied band width mode "Wide" or "Narrow" for each channel. It is useful for the operator to use the transceiver on various sites.

5-7. Scan Delete/Add

Scanning "delete/add" is programmable for each channel. Set the currently selected channel required to include in the scan sequence to "add".

The operator can change the "delete/add" information using the key programmed to "delete/add" function.

6. Key Functions

You can use these features, using the programming software (KPG-38D). Selector function is selectable channel select or group select.

The functions for Toggle switch are listed page 8 (Fig. 2). Right position is active for programmed function on toggle switch except "group select".

The functions for the top key are listed page 8 (Fig.2). Hold action and shift action are programmable.

The functions for side key are listed page 8 (Fig.2). Hold action and shift action are programmable.

The functions for microphone key are listed page 8 (Fig.2). Hold action is programmable.

6-1. No Function

Sounds error operation beep, and no action will occur. Use this function when the transceiver is required to be more simple operated.

6-2. AUX.

This function can be programmed when the voice scrambler board is not installed.

If this key is pressed, "AUX" icon lights on the LCD and AUX port which is inside of the transceiver turns to the high level. If pressed again, the "AUX" icon goes off and the AUX ports turns to the lower level.

6-3. Channel Down

If this key is pressed once, the channel number decreases by one step. If this key holds down for 500 ms (approximate), the channel number decreases continuously.

This key works as the squelch level adjuster in a squelch level adjust mode. This key works as the OST (operator selectable tone) number selector in the OST mode. This key works as the SCR (voice scrambler) code selector in the voice scrambler code select mode.

6-4. Channel Up

If this key is pressed once, the channel number increases by one step. If this key holds down for 500 ms (approximate), channel number increases continuously.

This key works as the squelch level adjuster in squelch level adjust mode. This key works as the OST (operator selectable tone) number selector in the OST mode. This key works as the SCR (voice scrambler) code selector in the voice scrambler code select mode.

6-5. Channel Name

This key switches the LCD display between the group/ channel number and the group/channel name.

6-6. Delete/Add

This key switches the currently displayed channel between "Delete" and "Add".

The "Add" channel contained in the scan sequence, and "Delete" channel is not contained. In the scan mode, this key switches the channel delete or add temporarily.

OPERATING FEATURES

Function Name	Selector (3)	Toggle Switch (4)	PF Keys (5)(6)7 (8) 9	Speaker/ Microphone PF Keys
Aux ${ }^{1}$		\checkmark	\checkmark	\checkmark
Channel Down			\checkmark	\checkmark
Channel Name			\checkmark	\checkmark
Channel Select	\checkmark			
Channel Up			\checkmark	\checkmark
Delete/Add			\checkmark	\checkmark
Emergency Call ${ }^{2}$			\checkmark	\checkmark
Group Down			\checkmark	\checkmark
Group Scan		\checkmark		
Group Select	\checkmark	\checkmark		
Group Up			\checkmark	\checkmark
Home Channel			\checkmark	\checkmark
Invert Display		\checkmark	\checkmark	\checkmark
Key Lock		\checkmark	\checkmark	\checkmark
Lamp			\checkmark	\checkmark
Low Power		\checkmark	\checkmark	\checkmark
Monitor		\checkmark	\checkmark	\checkmark
Monitor Momentary			\checkmark	\checkmark
No Function		\checkmark	\checkmark	\checkmark
Operator Selectable Tone			\checkmark	\checkmark
Operator Selectable Priority 1			\checkmark	
Operator Selectable Priority 2			\checkmark	
Scan		\checkmark	\checkmark	\checkmark
Scrambler ${ }^{3}$		\checkmark	\checkmark	\checkmark
Shift		\checkmark	\checkmark	
SP Attenuation				\checkmark
Squelch Level			\checkmark	\checkmark
Squelch OFF		\checkmark	\checkmark	\checkmark
Squelch Momentary			\checkmark	\checkmark
Talk Around		\checkmark	\checkmark	\checkmark

1 This function can be selected when the scrambler board has not been installed.
2 This function can be selected when the ANI board has been installed.
3 This function can be selected when the scrambler board has been installed.

Note : If "Shift" is pregrammed onto one of the PF keys or the toggle switch, the remaining PF keys can be programmed with two different functions. If "Shift" is programmed onto a PF key and the toggle switch, an error will occur and the function will not operate.

Fig. 2 Programmable functions

6-7. Group Down

If this key is pressed once, the group number decreases by one step. If this key holds down for 500ms (approximate), the group number decreases continuously.

This key works as the squelch level adjuster in squelch level adjust mode. This key works as the OST (operator selectable tone) number selector in the OST mode. This key works as the SCR (voice scrambler) code selector in the voice scrambler code select mode.

6-8. Group Up

If this key is pressed once, the group number increases by one step. If this key holds down for 500 ms (approximate), the group number increase continuously.

This key works as the squelch level adjuster in the squelch level adjust mode. This key works as the OST (operator selectable tone) number selector in the OST mode. This key works as the SCR (voice scrambler) code selector in the voice scrambler code select mode.

6-9. Home Channel

Press this key once, the channel switches to the pre-programmed home channel. Press this key again, the channel goes back to the previous channel.

6-10. Invert Display

Press this key once, the displayed the group/channel number or group/channel name are inverted. Press this key again, the display returns to the normal.

For the operator who does not change the display and needs "Invert" only, refer "Invert Display" setting of optional feature.

6-11. Key Lock

Pressing this key causes the transceiver to accept an entry of only the [Shift], [KeyLock], [PTT], [Emergency] keys, [Selector switch], [Volume], [Toggle], [Lamp], [Moni], [Moni monentary], [SQ off] and [SQ momentary].
"Lock" is used to prevent users from unexceptable key press which might cause a transceiver malfunction. The display does not change while the key is being locked.

Switching the transceiver off and on or pressing Key Lock again cancels the key lock. Key locked transceiver can still receive. Pressing this key while scanning, keys are locked but a scanning continues.

6-12. Lamp

Press this key, the transceiver illuminates the display and keypad back lit approximate 5 seconds. Press this key again, the transceiver stops the illuminating.

Pressing any key except the LAMP key while the illuminated restarts the 5 second timer.

6-13. Low Power

Press this key, the transmission power of all channel changes to Low. Press this key again, the transmission power returns to programmed value.

OPERATING FEATURES

6-14. Monitor

Monitor the channel before a transmission.
Press this key once, "MON" appears and unmutes speaker if a carrier is present, regardless of the specified signalling (including option signalling). Press this key again, "MON" disappears and mutes speaker.

Press this key after the Option Signalling is matched, the Option Signaling is reset and monitor is activated. DBD (Dead Beat Disable) mode is not reset by this operation.

6-15. Monitor Momentary

While pressing this key, the monitor function (refer 6-14) is activated. Release this key, the monitor function is deactivated.

6-16. Operator Selectable Tone

This key switches the pre-set decode QT/DQT and encode QT/DQT to OST (Operator Selectable Tone) tone pair.

Press this key, the transceiver enters to OST select mode. In this mode, the display shows "OFF" and the operator can select one of the OST tone pair using the channel up/ down key or the group up/down key. The display shows "TONE * * " and tone pair No. $* *$ is selected.

Press OST key again, the transceiver exits from the OST select mode, and returns to the group/channel mode with "OPT" icon. "OPT" icon means that the OST tone pair is selected. OST tone pair number or OFF can be memorized for each channel.

16 kinds of tone pair for OST can be programmed by KPG-38D. OST is useful to access the repeater with same radio frequency and different tone (OT/DOT).

6-17. Operator Selectable P1

If priority channel 1 is set as "Fixed" and "None" in the scan information. The operator can select the priority channel 1, using this key (operator selectable fixed P1).

Press this key on normal channel, the channel becomes to priority channel 1. Previous priority channel 1 returns to the normal channel. Press this key on the priority channel 1, the priority 1 will be lost (no priority 1).

6-18. Operator Selectable P2

If priority channel 2 is set as "Fixed" and "None" in the scan information. The operator can select the priority channel 2, using this key (operator selectable fixed P2).

Press this key on the normal channel, the channel becomes to the priority channel 2. Previous priority channel 2 returns to the normal channel. Press this key on priority channel 2 , the priority 2 will be lost (no priority 2).

6-19. Scan

Press this key starts scanning. Pressing this key stops scanning.

6-20. Shift

This key activates "Shift + [Key]" function. It is useful when the numbers or more of the functions are necessary.

6-21. Squelch Level

The preset squelch level is varied in user mode (0 to 15). Press the key programmed to "squelch level", the transceiver enters to "squelch level adjust mode".

The squelch level can be adjusted by group "up/down" function key or channel "up/down" function key. Press the key programmed to "squelch level" again, the adjusted level is memorized and returns to the normal user mode.

6-22. Squelch Momentary

While pressing this key, the transceiver unmutes speaker regardless of an existence of a carrier and "MON" appears and busy "LED" lights on.

Release this key, the transceiver mutes the speaker and "MON" disappears and busy "LED" lights off.

6-23. Squelch Off

Press this key, the transceiver unmutes speaker regardless of the existence of a carrier and "MON" appears and busy "LED" lights.

Press this key again, the transceiver mutes the speaker and "MON" disappears and busy "LED" lights off.

6-24. Talk Around

Press this key, the transceiver uses the receive frequency and the tone for transmission.

The operator can call the other party directory (without repeater). Press this key again, the talk around function goes off.

6-25. Emergency Call

Press this key, the transceiver enters to an emergency mode. In this mode, the channel is switched to the programmed emergency channel automatically and starts transmission with an emergency ID code which is programmed to ANI board.

The display depends on "Emergency Channel Display" setting.

6-26. SP Attenuation

Press this key once, the volume level of speaker-microphone is attenuated. Press this key again, the volume level of speaker-microphone returns to the previous level.

7.2-Tone

Built-in 2-Tone decoder (decoder program 1, decoder program 2, decoder program 3) is available for option signalling. It is possible to use individual call or group call.

8. DTMF

Built-in DTMF encoder is available for dialing (Manual dial, Auto-dial (9 memory), Re-dial (1 memory)) (Keypad model only). Built-in DTMF decoder is available for option signalling.

It is possible to use individual call, group call, DBD (Dead Beat Disable).

OPERATING FEATURES / REALIGNMENT

9. Data Programming (PC Mode)

9-1. Preparation and Connection

TK-290 transceiver is programmed by using a personal computer, programming interface cable KPG-36, and programming software KPG-38D.

The programming software can be used with an IBM-PC or compatible machine. Figure 3 shows the setup for programming.

9-2. Programming Interface Cable KPG-36 Description

The KPG-36 is required to interface TK-290 to the computer. It has a circuit in its D-sub 25pin connector case that converts RS-232C logic level to TTL level.

KPG-36 is used to connect between TK-290 universal connector and RS-232C serial port of computer.

9-3. Programming Software KPG-38D Description

KPG-38D is the programming software for TK-290 supplied on a 3.5" floppy disk. This software runs under MSDOS version 3.1 or later on an IBM-PC/XT, AT, or PS2 or compatible machine.

The data can be input to or read from TK-290 and edited on the screen. The programmed or edited data can be printed out. It is also possible to tune the transceiver.

We recommend that install KPG-38D for example to harddisk first then use it.

KPG-38D instruction manual part No. : B62-0814-XX.

Fig. 3

REALIGNMENT

1. Mode

Firmware programming mode

Mode	Function
User mode	Customer use this mode
PC mode	Communication between the radio and PC (IBM compatible). It requires the KPG-38D
PC programming mode	Frequency, signalling and features write to the radio and read from the radio.
PC test mode	Check the radio using the PC. This feature is included in the FPU.
Self programming mode	Frequency, signalling and features write to the radio.
Panel test mode (Refer to Adjustment)	Dealer use to check the fundamen- tal characteristics.
Firmware programming mode	Re-write the firmware of the flash ROM.

2. How to Enter Each Mode

Mode	Operation
User mode	Power on
PC mode	Power on begins the USER MODE.
Self programming mode	Hold down the [Side 1] key and the [Side 2] key, turn the radio power on.
Panel test mode	Hold down the [Side 2] key and [PTT], turn the radio power on, and release [PTT] first.
Firmware programming mode	Held down the [Side 2] key and [PTT], turn the radio power on, and release [Side 2] key first.

REALIGNMENT

3. Self Programming

Write mode for frequency data and signalling etc. Mainly used by the person maintaining the user equipment.

3-1. Enter to the self programming mode

Turn the power switch on, with the lead wire with plug PF (8 pin) shorted to the E (10 pin) lead (Figure 4), or delete R466 (SELF, Figure 5) in the TX-RX unit and turn the power switch on while pressing the [Side 1] and [Side 2] keys.

Note :

This mode (self programming mode) cannot be set when it has been disabled with the FPU.

Fig. 4

Fig. 5

When enter the self programming mode, "FUNC" appears after "SEL" is displayed for half a second.

Selecting any of Channel setting, Group setting, Function setting, or Clone master with the [Top 1] [Top 2] keys and then pressing [PTT] sets the Setting mode for that time.

Key operations in Self programming mode are as follows.

[Selector switch]	Not used
[PTT]	: Functions as a RUN or Execute key
[Top 1]	: Use as a Down key
[Top 2]	: Use as an Up key
[Side 1]	: Use for select channel steps in Channel setting mode, or switching for QT/DOT.
[Side 2]	: Use as a cancel key
[Orange]	: Add or delete frequencies in Channel setting mode
[Toggle]	Flipping this to the right while in Channel setting mode, shifts to MHz steps.

REALIGNMENT

3-2. Channel Setting Mode

Set data for each channel while in this mode. After first entering Self programming mode, select the "CHAN" display with [Top 1] [Top 2] and press [PTT] to set Channel Setting mode. Once in Channel Setting mode, select the group that needs setting with the [Top 1] [Top 2] keys and press [PTT]. Next select the channel for setting with the [Top 1] [Top 2] keys and press [PTT]. The setting items and setting data will then appear so reset the data with the [Top 1] [Top 2] keys and press [PTT]. When finished, the display shifts to the next setting item. After finished setting all items press [PTT] to return to Group selection. Changes in the frequency CH steps and the QT/DQT steps can be made in [Side 1].

No.	Function name	Display	Remarks
	Select Group/Channel	1.-1 during group selection 1-1. during channel selection	1-160~160-1
1	RX frequency	R150.0125	Receive frequency (Dot on right edge is lit up during 6.25 kHz steps)
2	RX signalling	RX 023N	Receive QT/DQT (Dot on right edge is lit up during 1 step changes)
3	TX frequency	T150.0125	Transmit frequency (Dot on right edge is lit up during 6.25 kHz steps)
4	TX signalling	TX 250.3	Transmit OT/DQT (Dot on right edge is lit up during 1 step changes)
5	Option signalling	2ToneA	OFF, DTMF, 2ToneA, 2ToneB, 2ToneC
6	DEL/ADD	D/A ADD	Delete, Add
7	Wide/Narrow	WIDE	Wide. Narrow
8	PTT ID	ID OFF	OFF, ON
9	TX power	POW HI	High, Low
10	Busy channel lockout	BCL OFF	OFF, ON
11	Beat shift	SFT OFF	OFF, ON

- Operation

1. Select the setting value with the [Top 1] [Top 2] keys.
2. Press the [PTT] and the selected value is backed up and operation shifts to the next item for setting.
3. Press [Side 2] on the Group selection screen in order to return to Self programming mode.

- Note

1. Different sample displays are shown.
2. Setting item No.s are displayed with a 7-segment 2-digit figure on the LCD.
3. Self programming mode cannot be set when set to Disaable with the FPU.
4. A red LED lights up during TX frequency and TX signalling.
5. Press [Orange] on the TX, RX frequencies setting screen in order to clear in the channel frequencies data.
6. Press [Orange] on the signalling setting screen in order to change or off the signalling function.
7. Flipping [Toggle] to the right during setting of $R X, T X$ frequencies and performing Up/Down operation allows frequencies to be changed in MHz steps.
8. The RX and TX frequencies can be entered with the number pad keys.

- Flow Chart

REALIGNMENT

3-3. Group Setting Mode

Set data for each Group while in this mode. After first entering Self programming mode, select the "GROUP" display with [Top 1] [Top 2] and press [PTT] to set Group Setting mode. Once in Group Setting mode, select the group that needs setting with the [Top 1] [Top 2] keys and press [PTT]. Next select the channel for setting with the [Top 1] [Top 2] keys and press [PTT]. The setting items and setting data will then appear so reset the data with the [Top 1] [Top 2] keys and press [PTT]. When finished, the display shifts to the next setting item. After finished setting all items press [PTT] to return to next Group selection.

No.	Function name	Display	Remarks
	Select Group	GRP 1	$1 \sim 160$
1	Battery save	BATT L	OFF, Short, Mid, Long
2	Time out timer	TOT 60	OFF, 30s~300s (30s step)
3	TOT pre alert	TOT.P 10	OFF, 1s~10s (1s step)
4	TOT rekey time	TOT.K 2	OFF, 1s~60s (1s setp)
5	TOT reset time	TOT.S 2	OFF, 1s~15s (1s step)
6	Group Delete/Add	D/A ADD	Delete, Add
7	Signalling	SIG AND	AND, OR

- Operation

1. Select the setting value with the [Top 1] [Top 2] keys.
2. Press the [PTT] and the selected value is backed up and operation shifts to the next item for setting.
3. Press [Side 2] on the Group selection screen in order to return to the Self programming mode initial display.

- Note

1. Different sample displays are shown.
2. Setting item No.s are displayed with a 7-segment 2-digit figure on the LCD.
3. Self programming mode cannot be set when set to Disable with the FPU.

- Flow Chart

3-4. Function Setting Mode

This mode allows making function settings for the transceiver. After first entering Self programming mode, select "FUNC" display with [Top 1] [Top 2] and then press [PTT] to set this mode. Function setting items are listed below.

No.	Function name	Display	Remarks
1	Power on tone	POW.T 15 (or C)	Continuas, 0~31
2	Control tone	CON.T 15 (or C)	Continuas, 0~31
3	Warning tone	WAR.T 15 (or C)	Continuas, 0~31
4	Alert tone	ALR.T 15 (or C)	Continuas, 0~31
5	Minimum volume	MIN.V 8	0~31
6	Battery warning	BATT ON	Disable, Enable
7	Busy LED	B.LED ON	OFF, ON
8	TX LED	T.LED ON	OFF, ON
9	Invert Display	LCD ON	Disabel, Enable
10	Priority 1	P1 NONE	None, Selected, Fixed
11	Priority 1 group	1.-1	1-1~10-16
12	Priority 1 channel	1-1.	(Priority $1=\ln$ fixed)
13	Priority 2	P2 NONE	None, Selected, Fixed
14	Priority 2 group	1.-1	1-1~10-16
15	Priority 2 channel	1-1.	(Priority 2= \ln fixed)
16	Revert channel	REVT 1	1~8 1 : Selected 2 : Last called 3 : Last used 4 : Sel+Talk back 5 : Priority 1 6 : Priority $1+$ Talk back 7 : Priority 2 8 : Priority 2+Talk back
17	Squelch level	SQ.LV 15	0~15

- Operation

1. Select the setting value with the [Top 1] [Top 2] keys.
2. Press the [PTT] and the selected value is backed up and operation shifts to the next item for setting.
3. Press [Side 2] on the Group selection screen in order to return to the Self programming mode initial display.

- Note

1. Different sample displays are shown.
2. Setting item No.s are displayed with a 7-segment 2-digit figure on the LCD.
3. Self programming mode cannot be set when set to Disable with the FPU.

REALIGNMENT

- Flow Chart

3-5. Clone Mode

1. Connect the cloning interface cable between the master side transceiver (source) and slave side transceiver (clone) as shown in the figure.

2. Set the master side transceiver to Self programming mode, and the transceiver display to "CLONE" with the [Top 1] key or [Top 2] key and press [PTT].

3. Set the power switch on the slave side transceiver to ON.
4. The red LED on the master side transceiver flashes when cloning starts and an "END" message appears when cloning ends.
5. The green LED on the slave side transceiver flashes.
6. When a problem occurs during cloning, an "ERROR" message appears on the master side transceiver.
7. Pressing the [Side 2] key sets clone mode.

Note:

The master transceiver copies only to type matched slave.

- All Clone

1. Press $[P T T]$ on the master side transceiver to start cloning of all data except for the transceiver model type and alignment data.

REALIGNMENT

- Group Clone

1. To clone the transceiver group data and channel data within the group, as well as group alphanumeric data, use the [Top 1] key or [Top 2] key to switch the display on the master side transceiver from "A CLONE" to "G CLONE".

2. Press [PTT] to show the group cloning selection.
3. Select the group with the [Top 1] or [Top 2] keys.
4. Press $[P T T]$ to show the slave side group cloning selection.
5. Select the group with the [Top 1] or [Top 2] keys.

6. Press the master side [PTT] to start cloning.

- Flow Chart

4. Firmware Programming Mode

4-1. Preface

Flash memory is mounted on the TK-290. This allows the TK-290 to be upgraded when new features are released in the future. (For details on how to obtain the firmware, contact Customer Service.)

4-2. Connection Procedure

Connect the TK-290 to the personal computer (IBM PC or compatible) with the interface cable (KPG-36). (Connection is the same as in the PC Mode.)

4-3. Programming

1. Start up the programming software (KPG-38D), select "firmware program" in the "Program" item, and press the Return key on the personal computer. This starts up the firmware programmer.
2. The top screen is displayed. Press any key to advance to the next screen.
3. Set the communications speed (normally, 38400 bps) and communications port in the Setup item.
4. Set the firmware to be updated by File select (=F1).
5. Held down the [Side 2] and [PTT]. Turn the TK-290 power on, and release [Side 2] first. Until the display change to "PROGRAM"
6. Check the connection between the TK-290 and the personal computer, and make sure that the TK-290 is in the Program mode.
7. Press F10 on the personal computer. A window opens on the display to indicate progress of writing. When the TK-290 starts to receive data, "PG" is appeared on 2 digit sub display.
8. If writing ends successfully, the red LED on the TK-290 lights and the checksum is displayed.
9. If you want to continue programming other TK-290s, repeat steps 5 to 8 .

Notes:

- To start the Firmware Programmer from KPG-38D, the Fpro path must be set up by KPG-38D setup.
- This mode cannot be entered if the Main Program mode is set to Disable in the Programming software (KPG-38D).

4-4. Function

1. If you press the [Top 2] switch while "PROGRAM" is displayed, the checksum is displayed. If you press the [Top 1] switch while the checksum is displayed, "PROGRAM" is redisplayed.
2. If you press the [Top 1] switch while "PROGRAM" is displayed, 1 dot light ("M.") to indicate that the write speed is low-speed (19200 bps). If you press the [Top 1] switch again while low-speed (19200 bps), 2 dot lights (".M.") to indicate, and the write speed becomes the high-speed mode (38400 bps).

Note :

Normally, write in the high-speed mode.

5. Panel Test Mode

Setting method refer to ADJUSTMENT.

CIRCUIT DESCRIPTION

1. Overview

The KENWOOD model TK-290 is a VHF/FM hand-held transceiver designed to operate in the frequency range of 136 to 174 MHz , the unit consists of a receiver, a transmitter, a phase-locked loop (PLL) frequency synthesizer, power supply circuits, a control unit.

2. Circuit Configuration by Frequency

The receiver is a double-conversion superheterodyne with a first intermediate frequency (IF) of 44.85 MHz and a second IF of 455 kHz . Incoming a signals from the antenna are mixed with the local signal from the PLL to produce the first IF of 44.85 MHz .

This is then mixed with the 45.305 MHz second local oscillator output to produce the 455 kHz second IF. This is detected to give the demodulated signal.

The transmit signal frequency is generated by the PLL VCO, and modulated by the signal from the microphone. It is then amplified and sent to the antenna.

Fig. 1 Frequency configuration

3. Receiver System

3-1. Front-end RF amplifier

The signal are then passed through an antenna matching coil, where the high-frequency components are amplified by a GaAs FET (O200). The signals are then fed into band-pass filter that uses varactor diode tuning to reject unwanted signal components, and is fed to the 1 st mixer.

3-2. First mixer

The 1st mixer uses the GaAs IC (IC200). The 1st mixer mixes the signal with the 1st local oscillator frequency from the VCO, and converts it to the 1 st IF $(44.85 \mathrm{MHz})$.

The signal then passes through monolithic crystal filter (XF300 ; Wide, XF301 ; Narrow) to remove unnecessary nearby frequency components. The signal from the MCF is used as the 1st IF signal.

3-3. IF amplifier

The 1st IF signal is amplified (Q302) and fed into IC300 in the FM IF IC. The IF signal is then mixed with the 2nd local oscillator frequency of 45.305 MHz to generate the 2 nd IF of 455 kHz . The 455 kHz signal is then passed through a ceramic filter (CF300, CF301; Wide, CF302, CF303 ; Narrow) and fed back into IC300 for additional amplification.

Fig. 2 Receiver section

Item	Rating
Nominal center frequency	44.85 MHz
Pass band width	$\pm 5 \sim 7 \mathrm{kHz}$ or more at 3dB
Attenuation band width	$\pm 25 \mathrm{kHz}$ or less at 3 dB
Ripple	1.0 dB or less
Insertion loss	4 dB or less
Guaranteed attenuation	80 dB or more at $\mathrm{fo} \pm 910 \mathrm{kHz}$ 40 dB or more within $\mathrm{fo} \pm 1 \mathrm{MHz}$
Terminating impedance	$350 / 4.5 \mathrm{pF}$

Table 1 Crystal filter XF300 (L71-0523-05) : Wide

Item	Rating
Nominal center frequency	44.85 MHz
Pass band width	$\pm 3.75 \mathrm{kHz}$ or more at 3dB
Attenuation band width	$\pm 12.5 \mathrm{kHz}$ or less at 25 dB
Ripple	1.0 dB or less
Insertion loss	4 dB or less
Guaranteed attenuation	80 dB or more at $\mathrm{fo} \pm 910 \mathrm{kHz}$ 40 dB or more within $\mathrm{fo} \pm 1 \mathrm{MHz}$
Terminating impedance	$350 / 4.5 \mathrm{pF}$

Table 2 Crystal filter XF301 (L71-0502-05) : Narrow

CIRCUIT DESCRIPTION

3-4. Wide/Narrow changeover circuit

Narrow and Wide settings can be made for each channel by switching the MCF; XF300 (Wide), XF301 (Narrow) with the ceramic filters CF300, CF301 (Wide), CF302, CF303 (Narrow).

The WIDE (high level) and NARROW (low level) data is output from IC400 (I/O port expansion) pin 4.

When a WIDE (high level) data is received, Q300, Q303 turn off and Q301, Q304 turn on. When a NARROW (low level) data is received, Q300, Q303 turn on and Q301, Q304 turn off. D300, D301 switch to MCF or D302, D303 are switched to ceramic filters when a high/low level data is received.

Q305 turns on/off with the Wide/Narrow data and the IC300 detector output level is changed to maintain a constant output level during wide or narrow signals.

Fig. 3 Wide/Narrow changeover circuit

Fig. 4 Wide/Narrow changeover circuit

3-5. Audio amplifier circuit

- TX-RX unit

The demodulated signal from IC300 goes through IC301, and is amplified by IC601 (2/2), high-pass filtered, low-pass filtered, high-pass filtered, band-eliminate filtered, and deemphasized by IC607.

The signal then goes through an electronic volume control (IC603), an AF amplifier IC604 (2/2), and an AF switch (Q 8 is on and Q 7 is on of the control unit), and is routed to audio power amplifier (IC1 of the control unit), where it is amplified and output to the internal speaker.

- Control unit

The audio mute signal (AMP SW) from the microprocessor becomes Low in the standby and Q5, Q6 which are power supply circuit for IC1 turn off. When the audio is output, AMP SW becomes High to turn Q5, Q6 on, and voltage is supplied to power terminal VP of IC1.

Speaker switching is done from IC403 (TX-RX unit) by INT AFC or EXT AFC. First, the logic level at the speakers switching terminal (SSW) on the universal connector is input to the microprocessor (IC406 TX-RX unit). The microprocessor then outputs data to IC403 based on this input.

When there is no SP-MIC installed, this logic level is high. When the INT AFC is high, the EXT AFC goes low, so the AF signal is only input to the amplifier for the internal speaker (INT SP) of IC1. However, when a SP-MIC has been installed, this logic level is low, so the INT AFC goes low and the EXT AFC goes high. So that the AF signal is input only to amplifier for the external speaker (EXT SP) of IC1.

Fig. 5 Audio amplifier circuit

3-6. Squelch circuit

The output signal from the squelch circuit, which consists of IC605 (2/2) and Q600, is applied to the microprocessor. The microprocessor passes information to the shift register (IC403) and it controls the mute control lines (AMP SW, INT AFC, and EXT AFC) according to the input signal (noise pulse) and the microprocessor task condition.

Fig. 6 Squelch circuit

CIRCUIT DESCRIPTION

4. Transmitter System

4-1. Microphone amplifier

The signal from IC3 (control unit) goes through the mute switch (Q403).

When the SP-MIC is not attached, the microphone switching terminal (MSW) on the universal connector becomes High, and mute switch (Q 403) is turned on. When the SP-MIC is attached, MSW is connected to GND at inside of SP-MIC. For this reason, Q403 is turned off, the internal microphone is muted, and only the input of the external microphone is supplied to the microphone amplifier of the TXRX unit.

The signal from microphone passes through the limiter circuit in D601, and through the high-pass filter, the ALC circuit, the low-pass filter, the high-pass filter, and pre-emphasis/IDC circuit in IC607. When encoding DTMF, mute switch (Q601) is turned off for muting the microphone input signal.

The signal passes through the D/A converter (IC603) for the maximum deviation adjustment, and enters the summing amplifier consisting of IC605 (1/2), and is mixed with the low speed data from the CPU (IC406).

The output signal from the summing amplifier goes to the VCO modulation input.

The other output signal from the summing amplifier passes through the D/A converter (IC603) again for the BAL adjustment, and the buffer amplifier (IC604 1/2), and goes to the VCXO modulation input.

4-2. Noise cancelling microphone circuit

The two signals from INT MIC (Main \& Sub) are input to the positive (+) input (Sub) and to the negative (-) input (Main) of the IC3. If the same signal is input to both Main and Sub, the Main signal is canceled at the output of IC3 (pin 7). In other words, noise from nearby sources not directly connected to the transceiver enters the Main and Sub inputs at the same signal and is therefore canceled out.

When a signal is only input to Main and there is no signal at Sub, the Main signal is output as is, from IC3 (pin 7). In other words, only the voice audio of the operator in extermely close proximity to the Main MIC is input to Main so that the signal is output as is from IC3 (pin 7). Also, when the "N/C" switch is set to "L", transistor Q14 turns off so Sub microphone turns off and operation is the same as above.

4-3. Drive and Final amplifier

The signal from the T/R switch (D7 is on) is amplified by the pre-drive (Q 6) and drive amplifier $(\mathrm{Q} 8)$ to 20 mW . The output of the drive amplifier is amplified by the RF power amplifier (IC501) to 5 W (1W when the power is low).

The RF power amplifier consists of two stages MOS FET transistor. The output of the RF power amplifier is then passed through the Transmit-Receive (TX-RX) antenna switching (D10 is on) and the harmonic filter (LPF) and the Internal-External (INT-EXT) antennal switching (in the universal connector) and applied to the antenna terminal.

Fig. 8 Drive and final amplifier and APC circuits

4-4. Internal-External (INT-EXT) antenna switching

The INT-EXT antenna switch housed inside the universal connector only switches to the EXT ANT side when an antenna speaker-microphone has been installed.

This INT-EXT antenna switch works mechanically and switches based on the operation shown in Figure 9.

Fig. 9 Internal-External antenna switching

Fig. 7 Microphoen circuit

CIRCUIT DESCRIPTION

4-5. APC circuit

The APC circuit always monitors the current flowing through the RF power amplifier (IC501) and keeps a constant current. The voltage drop at R35, R37, and R39 is caused by the current flowing through the RF power amplifier and this voltage is applied to the differential amplifier (IC7 1/2).

IC7 (2/2) compares the output voltage of IC7 (1/2) with the reference voltage from IC3, and the output of IC7 (2/2) controls the VGG of the RF power amplifier to make the both voltages to same voltage.

The change of power high/low is carried out by the change of the reference voltage. Q7, Q9, and Q13 are turned on in transmit and the APC circuit is active. (See Figure 8)

5. PLL Frequency Synthesizer

The frequency synthesizer consists of the VCXO (X1), VCO (IC10), PLL IC (IC5) and buffer amplifiers.

The VCXO generates 16.8 MHz . The frequency stability is within $\pm 2.0 \mathrm{ppm}$ (temperature range of -30 to $+60^{\circ} \mathrm{C}$). The frequency tuning and modulation of the VCXO are done to apply a voltage to pin 1 of the VCXO. The output of the VCXO is applied to pin 8 of the PLL IC.

The VCO of TK-290 covers the 38 MHz spread, setting frequencies in r1, r2 (receive) and t1, t2 (transmit) with a bias voltage applied to the -V terminal of the VCO. A zero (0) volt bias is applied at frequencies lower than $\mathrm{r} 1, \mathrm{t} 1$. Frequencies r1, t1 through r2, t2 are biased with -3 volts. Frequencies higher than r2, t2 are biased with -6 volts, and at 174 MHz tp 178 MHz are biased with -9 volts.

The relation of VCO frequency versus PLL lock voltage is shown in Figure 11.

The output of the VCO is amplified by the buffer amplifier (O3) and routed to the pin 5 of the PLL IC. Also the output of the VCO is amplified by the buffer amplifier (O5) and routed to the next stage according to T/R switch (D7).

The PLL IC consists of a prescaler, fractional divider, reference divider, phase comparator, charge pump. This PLL IC is fractional- N type synthesizer and performs is the 40 or 50 kHz reference signal which is eighth of the channel step ($5,6.25$ or 7.5 kHz). The input signal from the pins 1 and 5 of the PLL IC is divided down to the 40 or 50 kHz and compared at phase comparator. The pulsed output signal of the phase comparator is applied to the charge pump and transformed into DC signal in the loop filter (LPF). The DC signal is applied to the pin 4 of the VCO and locked to keep the VCO frequency constant.

PLL data is output from DT (pin21), CLK (pin 22) and LE (pin 20) of the microprocessor (IC406). The data are input to the PLL IC when the channel is changed or when transmission is changed to reception and vice versa. A PLL lock condition is always monitored by the pin 28 (UL) of the microprocessor. When the PLL is unlocked, the UL goes low.

Fig. 10 PLL block diagram

Fig. 11 CV voltage vs frequency

6. Power Supply Circuit

Battery +B is supplied via a 3A fuse from the battery terminal connected to the TX-RX unit. After passing through the power switch power supply (SB) is applied to the two AVR ICs, and AVR circuit.

IC401 supplies 5 V (5CM) to the control circuit. IC402 supplies $5 \mathrm{~V}(5 \mathrm{M})$ to the common circuit.

AVR circuit (Q400, Q402, Q405, Q406) supplies voltage to the TX circuit and the RX circuit. 5 C is common 5 V and output when SAVE is not set at off. 5 R is 5 V for reception and output during reception. 5 T is 5 V for transmission and output during transmission.

Fig. 12 Power supply circuit

CIRCUIT DESCRIPTION

7. Control Circuit

The control unit consists of microprocessor IC406 and its peripheral circuits. It controls the TX-RX unit and transfers data to and from the control unit. The CPU (IC406) mainly performs the following :

1) Switching between transmission and reception by PTT signal input.
2) Reading channel, frequency, and program data from the memory circuit.
3) Sending frequency program data to the PLL.
4) Controlling squelch on/off by the pulse signal input from the squelch circuit.
5) Controlling the audio mute circuit by decode data input.
6) Transmitting encode data (QT, DTQ).
7) Sending serial data to output expander (IC400, IC403, IC404 and IC405) to control various function in the unit.

7-1. Memory circuit

IC406 has a flash memory with a capacity of 1 M bits that contains the transceiver control program for the CPU and data such as transceiver channels and operating features.

This program can be easily written from an external devices. Data, such as DTMF memories and operating status, are programmed into the EEPROM (IC412).

Fig. 13 Memory circuit

7-2. CPU clock shift

When the CPU (IC406) 14 MHz clock (X400) high frequency (actually the integral double high frequency of 7 MHz because it is halved) is multiplexed with the reception frequency, it becomes an internal beat signal, suppressing the signal sensitivity. To prevent this, by turning Q407 on, the clock frequency is shifted (about 4 kHz).
(Shift on/off can be set through programming.)

Fig. 14 CPU clock frequency shift

7-3. Shift register

IC400, 403, 404 and 405 is an interface IC for I/O port expansion. It is used to expand the CPU (IC406) output ports.

7-4. D/A converter

IC3 and IC603 is used as a conventional semi-fixed-resistor converter. It sets the following :

1) $R X$ sensitivity
2) Transmission power
3) Modulation level
4) Audio power
5) Frequency

7-5. Key input

It the clock is supplied to CLK terminal when the RES terminal (CPU pin 70) of the decade counter (IC2) is set to Low, Q0 to Q7 become High sequentially. Normally, KI1 and KI2 are Low (pulled down). When any key is pressed, KI1 or KI2 become High. The CPU detects which key is pressed, according to the voltage of KI1 and KI2 and clock timing.

Fig. 15 Key input

Fig. 16 Decade counter timing chart

CIRCUIT DESCRIPTION

7-6. Low battery warning

The battery voltage is monitored by the microprocessor (IC406). When the battery voltage falls below the voltage set by the Low Battery Warning adjustment, the red LED flashes to notify the operator that it is time to replace the battery. If the battery voltage falls even more (approx. 5.8V), a beep sounds and transmission is stopped.

Low battery warning	Battery condition
The red LED flashes during	The battery voltage is low but the transceiver is still usable transmission The red LED flashes and The battery voltage is low and
continuous beep sounds while PTT pressed.	the transceiver is not usable to make calls.

8. Signalling Circuit

8-1. Encode

The CPU (IC406) transmits the encode data selected by the program.

- Low-speed data (OT, DOT)

Low-speed data is output from pin 35 of the CPU. The signal passes through a low-pass CR filter, and goes to the summing amplifier (IC605 1/2). The signal is mixed with the audio signal and goes to the VCO (IC10) and VCXO (X1) modulation input after passing through the D/A converter (IC603) for BAL adjustment.

- High-speed data (DTMF)

High-speed data is output from pin 36 of the CPU. The signal passes through a low-pass filter consisting of IC413, and provides a TX DTMF tone and a RX DTMF tone including a beep tone. The TX DTMF tone is passed to the D/A convertor (IC603) for DTMF deviation adjustment, and then applied to the audio processor (IC607).

The signal is mixed with the audio signal and goes to the VCO and VCXO. The RX DTMF tone is passed the D/A convertor (IC603) for audio control, summing amplifier (IC604 2/ 2), audio power amplifier and then to the speaker.

Fig. 17 Encode

8-2. Decode

- Low-speed data (QT, DQT)

The demodulated signal from the FM IF IC (IC300) is amplified by IC601 (2/2) and passes through a low-pass filter (IC602) to remove audio components. The signal is input to pin 26 of the CPU.

The CPU digitizes this signal, performs processing such as DC restoration, and decodes the signal.

- High-speed data (DTMF)

The DTMF input signal from the FM IF IC (IC300) is amplified by IC601 (2/2) and goes to IC600, the DTMF decoder. The decoded information is then processed by the CPU. During transmission and standby, the DTMF IC is set to the power down mode when the PD terminal is High. When the line is busy, the PD terminal becomes Low, the power down mode is canceled and decoding si carried out.

- High-speed data (2 tone)

The demodulated signal from the FM IF IC (IC300) is amplified by IC601 (2/2) and passes through an audio processor (IC607) and band-pass filter (IC606) to remove a low-speed data.

The CPU digitizes this signal, performs processing such as DC restoration, and decodes the signal.

Fig. 18 Decode

CIRCUIT DESCRIPTION

9. Option Board Terminal

Terminals for mounting the option board are provided at the bottom of the TX-RX unit. The table below shows the correspondence between the board and terminals. Disconnect R414 and R665 in TX-RX unit when the option board is attached.

Fig. 19

9-1. Option port 1 (For ANI board etc.)

Name	Function	Note
DATI	Data input Received signal to board	Reference 1 kHz STD Dev \rightarrow $250 \sim 350 \mathrm{mVrms}$
DATO	Data output	Reference
	Modulation (ANI) output	$1 \mathrm{kHz} / 150 \mathrm{mVrms} \rightarrow$
	from board	$2.5 \sim 3.5 \mathrm{kHz} /$ wide
		$1.25 \sim 1.75 \mathrm{kHz} / \mathrm{narrow}$
TCONT	SP amp control from board	
STONE	Side tone from board	
AUDIH	MIC inhibit from board	
E	Ground	
MUTE	AF mute from board	
SCALL	Sel call LED port from board	No connection
AUX	EM CH request from board	EM : Emergency
PTT	PTT logic to baord	
MAND	Man down logic to board	
EMERG	EM CH logic to board	EM : Emergency
BUSY	Busy logic to baord	
KEY	TX request from board	TX : Transmission
A+	Power supply for board	Switched

9-2. Option port 2 (For voice scrambler etc.)

Name	Function	Note
CODE1	Scramble code select port 1	LSB
CODE2	Scramble code select port 2	
CODE3	Scramble code select port 3	
CODE4	Scramble code select port 4	MSB
TXOUT	Modulation output from board	Reference $1 \mathrm{kHz} / 15 \mathrm{mVrms} \rightarrow$ $2.5 \sim 3.5 \mathrm{kHz} /$ wide 1.25~1.75kHz/narrow
RXOUT	Received signal output from board	
NC	No Connection	
E	Ground	
PTTIO	TX (Low) / RX (High) to board	
CLR/C (AUX)	Clear (High) / Scramble (Low) to board (C : means Code)	
RXAEN	Power save request for board Save: Low	
RXIN	Received signal input to board	Reference 1 kHz STD Dev \rightarrow 250~350mVrms
TXIN	Modulation input to board	
+V	Power supply for board	Switched

SEMICONDUCTOR DATA

1. Microprocessor : MC-8800-802 (TX-RX Unit IC406)

1-1. Terminal function

Pin No.	Port name	I/O	Function	Pin No.	Port name	1/0	Function
1~4	A7~A4	1	NC : Flash memory address bus	49	DCK	0	DTMF clock
5~7	AD5~AD3	I/O	NC : Flash memory address and data bus	50	SCL	0	EEPROM clock
8~11	A3~A0	1	NC : Flash memory address bus	51	GND	-	GND
12	Vcc	-	+5V.	52	SDA	I/O	EEPROM data
13	OE	1	GND : Address latch output enable	53	LD	0	DA converter LD
14	VSS	1	GND : Test port	54	MSTB	0	MSK modulation strobe
15~18	CH A~CH D	I	Rotary SW 1~4	55	MSKE	0	MSK modulation enable
19	TGL	I	Toggle switch input	56	RESET	I	μ-com reset Active : L
20	LE	0	PLL enable	57,58	X2, X1	-	14.754MHz (System clock)
21	DATA	0	Common data	59	FCLR	0	MSK flame reset output
22	CLOCK	0	Common clock	60	RDT	I	MSK demodulation data input
23	VOL	1	Volume level input	61,62	STB2, STB1	0	Shift register strobe 2, 1
24	PF	1	SP key 1/2	63	SOE	0	Shift register output enable
25	TEMP	I	TEMP	64	PTT	I	PTT key input
26	LSDIN	1	Low speed data input (QT/DQT)	65	LCDCS	0	LCD driver chip select output
27	BATT	1	Battery voltage input	66,67	KEY2, KEY1	1	Key counter return 2, 1
28	UL	1	PLL unlock detect input	68	LCDDO	1	Radio kill data input for optional board
29	GND	-	GND	69	KCK	0	Key counter clock output
30	MDATA	0	Modem data input	70	KRST	0	Key counter reset output
31	EXSP	1	EXT SP Connect : L, Non connect : H	71	A10	I/O	NC : Not used
32	AVDD	-	+5V	72	RD	0	Flash ROM read bus
33	AVREF1	-	+5V	73	OE	I	Flash ROM output enable
34	AVSS	-	GND	74	A17	1/0	Flash memory address and data bus
35	LSDOUT	0	Low speed data output (QT/DQT)	75	CE	1	Flash memory chip enable
36	HSDOUT	0	High speed data output (DTMF/Beep)	76	A11	I/O	NC
37	AVREF2	-	+5V	77	A14	1/O	NC
38	AVREF3	-	GND	78,79	-	-	NC : Not used
39	SELF	1	Self programming enable/disable	80	GND	-	GND
			H: Enable, L : Disable	81,82	A9, A8	I/O	NC
40	INTP0	1	μ-com stop	83,84	A13, A14	1/O	NC
41	STD	1	DTMF decoder STD	85	WR	0	Flash ROM write bus
42	BUSY	1	Noise pulse input	86	Vcc	-	+5V
43	2TONE	1	2 tone data input	87,88	A16, A15	1/0	A16, A15
44	TRD	1	MSK modulation data output timing	89,90	A16, A15	1	A16, A15 : Flash memory address bus
			pulse input	91	A12	1/O	NC
45	RTM	1	MSK demodulation data input timing	92	NC	-	NC : Not used
			pluse input	93~95	AD2~AD0	I/O	NC
46	SD	1	DTMF decoder SD	96,97	AD7, AD6	1/0	NC
47	RXD	1	Serial interface input	98,99	GND	-	GND
48	TXD	0	Serial interface output	100	ASTB	I/O	NC : Flash memory address strobe

SEMICONDUCTOR DATA

2. D/A Converter : M62354GP (TX-RX Unit IC3)

2-1. Terminal connection

2-2. Block diagram

2-3. Terminal function

Pin No.	Symbol	I/O	Function
1	Do	O	12-bit shift register MSB bit data is output.
2	LD	I	When the LD is at the high level, the 12-bit shift register value is loaded to the D/A output register.
3	CLK	I	Shift clock input. With the rise of the shift clock, the input signal from the Dl is input to the 12-bit shift register.
4	DI	I	Serial data input. Input serial data 12 bits long.
5,6	AO1, AO2	O	8-bit resolution D/A.
7	NC	-	Not connected.
8	GND	-	GND.
9	Vss	-	Terminal for determining the D/A conversion reference low side point level.
10	NC	-	Not connected.
11~14	AO3~A06	O	8-bit resolution D/A.
15	VDD	-	Terminal for determining the D/A conversion reference up side point level.
16	Vcc	-	Power supply.

3. RF Power Amplifier : PHW2627-1 (Control Unit IC501)

3-1. Block diagram

3-2. Maximum ratings (Flange temperature $=25^{\circ} \mathrm{C}$)

Rating	Symbol	Value	Unit
DC supply voltage	VS1,2	10	Vdc
DC control voltage	Vcont	10	Vdc
RF input power	Pin	15	dBm
RF output power	Pout	8	W
Operating case temperature range	Tc	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	-30 to +100	${ }^{\circ} \mathrm{C}$

SEMICONDUCTOR DATA

4. DC-DC Converter : MAX865 (TX-RX Unit IC4)

4-1. Terminal connection

4-2. Terminal description

Pin No.	Name	Function
1	C1-	Negative terminal of the flying boost capacitor.
2	C2+	Positive terminal of the flying inverting capacitor.
3	C2-	Negative terminal of the flying inverting capacitor.
4	V-	Output of the inverting charge pump.
5	GND	Ground
6	IN	Positive power supply input
7	V+	Output of the boost charge pump.
8	C1+	Positive terminal of the flying boost capacitor.

4-3. Electrical characteristics

Parameter	Conditions	MIN	TYP	MAX	Units
Minimum supply voltage	Rload =10k	2.0	1.5		V
Maximum supply voltage	Rload =10k			6.0	V
Supply current	TA $=+25^{\circ} \mathrm{C}$		0.6	1.05	mA
	TA $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)			1.15	
Oscillator frequency	TA $=+25^{\circ} \mathrm{C}$	19.5	24	32.5	kHz
	TA $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)	18		34	

Note 1 : These specifications are guaranteed by design and are not production tested.

5. LCD Driver : LC75824W (Control unit IC101)

5-1. Block diagram

5-2. Terminal function

Pin No.	Name	I/O	Active	Function
1~12	S1/P1~S12/P12	O	-	Segment output for displaying data transferred from serial data.
13~51	S13~S51			
52~55	COM1~COM4	O	-	Common driver output. Frame frequency $\mathrm{fo}=(\mathrm{fosc} / 512) \mathrm{Hz}$
56	VDD	-	-	
57	VDD1	I	-	Apply 2/3 the LCD drive bias voltage from outside. If $1 / 2$ the bias is applied, connect to VDD2.
58	VDD2	I	-	Apply $1 / 3$ the LCD drive bias voltage from outside. If $1 / 2$ the bias is applied, connect to VDD1.
59	VSS	-	-	
60	OSC	I/O	-	Oscillation terminal.
61	$\overline{\mathrm{INH}}$	1	L	Force the display to turn off regardless of internal data. Serial data can be input regardless of whether it is " H " or " L ".
62	CE	I	H	Chip enable. Serial data transfer terminal. Connected to the microprocessor.
63	CL	I	- \uparrow	Synchronizing clock. Serial data transfer terminal. Connected to the microprocessor.
64	DI	1	-	Transfer data. Serial data transfer terminal. Connected to the microprocessor.

TK-290

SEMICONDUCTOR DATA / DESCRIPTION OF COMPONENTS

6. VCO System : KCH40 (TX-RX Unit IC10)
 6-1. Circuit diagram

7. Active DBM : GN2011 (TX-RX Unit IC200)

7-1. Circuit diagram

Control Unit (X53-3780-XX) -10: K -11: K2

Ref. No.	Use / Function	Operation / Condition
IC1	Audio power amplifier	0.5W/16, BTL method
IC2	Decimal counter	
IC3	MIC noise canceling circuit	
IC4	Option board (MAND) control switch	AND circuit MAND : "H", OUT : "H" when Q8 port is "H"
IC5	Option board (OPPTT) control switch	AND circuit OPPTT : "H", OUT : "H" when Q9 port is "H"
IC6	Option board (TCONT) control switch	AND circuit MAND : "H", OUT : "H" when Q9 port is "H"
IC101	LCD driver	RF power amplifier
IC501	AF	AF
AF AMP switch	AVR	AF AMP switch power supply
O6	Int. audio mute switch	INT. AFC "H" : INT. SP audio signal on
Q7	Audio mute switch signal off	MUTE "L" : RX audio
O8		

Ref. No.	Use / Function	Operation / Condition					
Q14	N/C switch	N/C switch "H" : N/C on	$	$	Q15	Ext. audio mute switch	EXT AFC "H" : EXT. SP audio signal on
:---	:---	:---					
D2	AVR	AF AMP power supply					
D6~9	Key pad backlight						
D11	Reverse current prevention for number key pad						
D12,13	Reverse current prevention for PF key.						
D14	Reverse current prevention for number key pad						
D15,16	Reverse current prevention for PF key.						
D17,18	Reverse current prevention for number key pad						
D19,20	Reverse current prevention for PF key.						
D101	Speed up	Red, green					
D102,103	LCD backlight	LED					
D104	LED						

DESCRIPTION OF COMPONENTS

TX-RX Unit (X57-5390-10)

Ref. No.	Use / Function	Operation / Condition
IC2	Level shift	
IC3	D/A converter (adjustment)	
IC4	DC-DC converter	Outputs \pm twice the input voltage 5M
IC5	Phase locked loop system	
IC6	Level shift	
IC7	APC comparator	
IC10	VCO system	
IC200	Active DBM	
IC300	FM IF system	2nd mixer, Quadrature detector, AF output, Noise amplifier output, S-meter output
IC301	Audio mute switch	
IC400	Shift register	Output expander
IC401	Voltage regulator	5CM
IC402	Voltage regulator	5M
IC403~405	Shift register	Output expander
IC406	Microprocessor	16 bit +1M flash
IC407	Voltage detector	INTPO
IC408	Address decoder	AND gate
IC409	Voltage detector	Reset
IC410	Address decoder	OR gate
IC411	Address decoder	NOR gate
IC412	EEPROM	
IC413	Active filter	For HSD output
IC600	DTMF decoder	
IC601	Buffer amplifier	
IC602	Active filter	LPF for LSD input
IC603	D/A converter (Adjustment)	
IC604	Summing amplifier/ Buffer amplifier	AF/TO
IC605	Active filter/ Summing amplifier	SQL : HPF, MOD : Summing amplifier
IC606	Active filter	LPF for 2 tone
IC607	Audio processor	
Q1	DC switch	T/R "H" : RX
Q2	DC convert switch	
Q3	RF amplifier	Buffer for RF input
Q4	Ripple filter	4C
Q5	Buffer amplifier	
Q6	RF amplifier	TX drive
Q7	DC switch	APC circuit power switch
Q8	RF amplifier	TX drive
Q9	DC switch	APC voltage control
O10	DC switch	APC off : Speed up
Q13	DC switch	D/A port protection
Q200	RF amplifier	RX front

Ref. No.	Use / Function	Operation / Condition
Q300	DC switch	1st IF W/N switch sets to on when Narrow
Q301	DC switch	1st IF W/N switch sets to on when Wide
Q302	IF amplifier	Post amplifier
Q303	DC switch	2nd IF W/N switch sets to on when Narrow
Q304	DC switch	2nd IF W/N switch sets to on when Wide
Q305	DC switch	
Q307	DC switch	
Q400	DC switch	5TC "H" : on
Q401	DC switch	$\begin{aligned} & \text { 5CC "H" : on, } \\ & \text { 5TC "H" : on, } \end{aligned}$
Q402	DC switch	Regulator 5T, 5C
Q403	DC switch	MIC mute
Q404	DC switch	MIC switch
Q405	DC switch	5CC "H" : on
Q406	DC switch	5R
Q407	Clock frequency shift	
Q408	DC switch	TX LED (Red) driver
Q409	DC switch	Busy LED (Green) driver
Q410	DC switch	Lamp
Q411	Current driver	Lamp : Backlight
Q600	DC switch	Clip
0601	Mute switch	MIC line mute
Q602	DC switch	
Q603	DC switch	SQL : W/N adjustment
D4	Noise rejection	
D5	Frequency shift	2nd local cutoff frequency
D6	Current steering	
D7	TX/RX switch	
D8	Temperature compensation	
D9	Voltage protection	
D10,11	ANT switch	
D200	Overload protection	
D201,202	Varactor tuning	For L201
D203,204	Varactor tuning	For L202
D205,206	Varactor tuning	For L205
D207,208	Varactor tuning	For L206
D300,301	RF switch	1st IF wide/narrow
D302,303	RF switch	2nd IF wide/narrow
D400	Reverse protection	
D401	Overload protection	
D402,403	Surge absorption	
D409	Voltage reference	
D601	Voltage clamp	

TK-290

* New Parts. \triangle indicates safety critical components.

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
L: Scandinavia
K : USA
P : Canada
Y: PX (Far East, Hawaii)
T: England
E : Europe
Y: AAFES (Europe)
X: Australia
M: Other Areas

TK-290
CONTROL UNIT (X53-3780-XX)

TK-290

CONTROL UNIT (X53-3780-XX)
TX-RX UNIT (X57-5390-10)

Ref. No.	Address	$\begin{array}{\|l\|} \hline \text { New } \\ \text { parts } \\ \hline \end{array}$	Parts No.	Description		Destination	Ref. No.	Address	New parts	Parts No.	Description			Destination
R3			RK73GB1J 470J	CHIP R 47	1/16W	K2	C18			C92-0588-05	CHIP-TAN	1.5UF	16 V	
R4,5			RK73GB1J 473J	CHIPR 47K J	1/16W		C19,20			CK73GB1C104K	CHIP C	0.10UF	K	
R6-8			R92-1252-05	CHIPR 0 OHM			C21			C92-0560-05	CHIP-TAN	10UF	6.3WV	
R9,10			RK73GB1) 102]	CHIPR 1.0K J	1/16W		C22			CK73GB1H103K	CHIPC	0.010UF	K	
R12			RK73GB1J 102]	CHIPR 1.0K J	1/16W		C23			CC73GCH1H101J	CHIP C	100PF	I	
R13			RK73GB1J 473J	CHIPR 47K J	1/16W		C24			C92-0502-05	CHIP-TAN	0.33UF	35W V	
R14			RK73GB1) 104J	CHIPR 100K J	1/16W		C27			CK73GB1C104K	CHIP C	0.10UF	K	
R15			RK73GB1) 222]	CHIPR 2.2K J	1/16W		C28			CK73GB1E223K	CHIP C	0.022UF	K	
R17,18			RK73GB1) 473J	CHIPR 47K J	1/16W		C29			CC73GCH1H100D	CHIP C	10PF	D	
R19,20			RK73GB1) 101]	CHIPR 100 J	1/16W		C30			CC73GCH1H220J	CHIP C	22PF	J	
R22,23			RK73GB1J 102]	CHIPR 1.0K J	1/16W		C31			CK73GB1H471K	CHIP C	470PF	K	
R26-28			RK73GB1J 103J	CHIPR 10K J	1/16W		C32			C92-0002-05	CHIP-TAN	0.22 UF	35WV	
R29,30			RK73GB1) 223J	CHIP R 22K J	1/16W		C33			CC73GCH1H220J	CHIP C	22PF	J	
R32			RK73GB1] 680J	CHIPR 68 J	1/16W		C34			CC73GCH1H331J	CHIP C	330PF	J	
R33			RK73GB1) 223J	CHIPR 22K J	1/16W		C35			CC73GCH1H100D	CHIP C	10PF	D	
R34			RK73GB1) 182]	CHIP R 1.8K J	1/16W	$\begin{array}{\|l} \mathrm{K} \\ \mathrm{~K} 2 \end{array}$	C36			CC73GCH1H150J	CHIP C	15PF	J	
R35			RK73GB1) 103J	CHIPR 10K J	1/16W		C37			CK73GB1H471K	CHIP C	470PF	K	
R36			RK73GB1J 182)	CHIPR 1.8K J	1/16W		C38			CC73GCH1H050C	CHIP C	5.0PF	C	
R36-42			RK73GB1) 102]	CHIPR 1.0K J	1/16W		C39			CK73GB1H102K	CHIP C	1000PF	K	
R43,44			RK73GB1) 473J	CHIPR 47K J	1/16W		C40			C92-0560-05	CHIP-TAN	10UF	6.3WV	
R45-49			RK73GB1) 102]	CHIP R 1.0K	1/16W	$\begin{array}{\|l\|} \hline \mathrm{K} \\ \mathrm{~K} 2 \end{array}$	C41C42C43C45C46			CK73GB1H471K	CHIP C	470PF	K	
R45-55			RK73GB1) 102J	CHIP R 1.0K J	1/16W					CC73GCH1H100D	CHIP C	10PF	D	
R56			RK73GB1J 153J	CHIPR 15K J	1/16W					C92-0507-05	CHIP-TAN	4.7UF	6.3WV	
R57			R92-1252-05	CHIPR 0 OHM						CC73GCH1H120J	CHIP C	12PF	J	
R59			RK73GB1) 102]	CHIPR 1.0K J	1/16W					CK73GB1H102K	CHIP C	1000PF	K	
R101-104			RK73GB1J 103J	CHIP R 10K	1/16W		C47			CK73GB1H471K	CHIP C	470PF	K	
R105			RK73GB1) 332	CHIP R 3.3K J	1/16W		C48			CK73GB1H102K	CHIP C	1000PF	K	
R106			RK73GB1) 274	CHIPR 270K J	1/16W		C49,50			CK73GB1H471K	CHIP C	470PF	K	
R502			RK73GB1J 102J	CHIPR 1.0K J	1/16W		C52			CK73GB1H102K	CHIP C	1000PF	K	
							C53-57			CK73GB1H471K	CHIP C	470PF	K	
D2			DTZ3.9(B)	ZENER DIODE										
D11			IM N10	DIODE		K2	C58			CC73GCH1H101J	CHIP C	100PF	J	
D12,13			M A2S111	DIODE			C59			CC73GCH1H680J	CHIP C	68PF	J	
D14			IM N10	DIODE		K2	C60-64			CK73GB1H471K	CHIP C	470PF	K	
D15			M A2S111	DIODE			C66,67			CK73GB1H471K	CHIP C	470PF	K	
							C69			CC73GCH1H390J	CHIP C	39PF	J	
D16			IM N10	DIODE		K								
D16-18			IM N10	DIODE		K2	C70			CC73GCH1H101J	CHIP C	100PF	J	
D19,20			M A2S111				C71			CK73FB1C474K	CHIP C	0.47UF	K	
D101			$15 S 373$	DIODE			C73			C92-0543-05	CHIP-TAN	3.3UF	10WV	
IC1			TDA 7053AT	IC (AUDIO AM P)			C76			CC73GCH1H101J	CHIP C	100PF	J	
							C77			CC73GCH1H070D	CHIP C	7.0PF	D	
IC2			M C74HC4017F	IC (GATE CM OS)										
IC3			NJ M 2904V	IC (APC)			C78			CK73GB1H103K	CHIP C	0.010UF	K	
IC4-6			TC7SH08FU	IC (2ch AND GATE)			C79			CK73FB1C474K	CHIP C	0.47UF	K	
IC101		*	LC75824W	IC (LCD DRIVER)			C81,82			CK73GB1H102K	CHIP C	1000PF	K	
IC501		*	PHW 2627-1	IC (POW ER M UDULE)			C83			CC73GCH1H200J	CHIP C	20PF	J	
							C84,85			CK73GB1H102K	CHIP C	1000PF	K	
Q5			2SC4617(S)											
Q6			2SB798(DL,DK)	TRANSISTORTRANSISTOR			C86			CC73GCH1H220J	CHIP C	22PF	J	
Q7,8			2SK1824	FET			C87			CK73GB1H102K	CHIP C	1000PF	K	
Q14			UMC4	TRANSISTOR			C88			CC73GCH1H120J	CHIP C	12PF	J	
Q15			2SK1824	FET			C89			CC73GCH1H090D	CHIP C	9.0PF	D	
							C90			CC73GCH1H270J	CHIP C	27PF	J	
TX-RX UNIT (X57-5390-10)										CC73GCH1H				
C1			C92-0560-05	CHIP-TAN 10UF	6.3WV		C92			CC73GCH1H120)	CHIP C	12PF	J	
C5			CK73GB1H102K	CHIP C 1000PF	K		C93,94			CC73GCH1H100D	CHIP C	10PF	D	
C6			C92-0560-05	CHIP-TAN 10UF	6.3WV		C95-97			CK73GB1H102K	CHIP C	1000PF	K	
C8-10			CK73GB1H102K	CHIP C 1000PF	K		C99			CK73GB1H102K	CHIP C	1000PF	K	
C11			C92-0588-05	CHIP-TAN 1.5UF	16 V									
							C100			C92-0560-05	CHIP-TAN	10UF	6.3WV	
C13			CK73GB1C104K	CHIP C 0.10UF	K		C202			CC73GCH1H060D	CHIP C	6.0PF	D	
C14,15			C92-0588-05	CHIP-TAN 1.5UF	16 V		C204			CK73GB1H102K	CHIP C	1000PF	K	
C16			CK73GB1C104K	CHIP C 0.10UF	K		C205			CC73GCH1H030C	CHIP C	3.0PF	C	
C17			CK73GB1H102K	CHIPC 1000PF	K		C206,207			CK73GB1H102K	CHIP C	1000PF	K	

TX-RX UNIT (X57-5390-10)

Ref. No.	Address	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { New } \\ \text { parts } \end{array} \\ \hline \end{array}$	Parts No.	Description			Destination	Ref. No.	Address	$\begin{array}{\|c\|} \hline \text { New } \\ \text { parts } \\ \hline \end{array}$	Parts No.	Description			$\begin{array}{\|l\|} \hline \begin{array}{c} \text { Desti- } \\ \text { nation } \end{array} \\ \hline \end{array}$
C209,210			CK73GB1H102K	CHIP C	1000PF	K		C441			CK73HB1C103K	CHIP C	0.010UF	K	
C212,213			CK73GB1H102K	CHIP C	1000PF	K		C442			CK73FB1C474K	CHIP C	0.47UF	K	
C214			CC73GCH1H060D	CHIP C	6.0PF	D		C443			CK73GB1H222K	CHIP C	2200PF	K	
C215			CC73GCH1H030C	CHIP C	3.0PF	C		C444			CC73GCH1H680J	CHIP C	68PF	J	
C216			CC73GCH1H010C	CHIP C	1.0PF	C		C445,446			CK73GB1H222K	CHIP C	2200PF	K	
C217			CK73GB1H102K	CHIP C	1000PF	K		C447,448			CC73GCH1H270	CHIP C	27PF	J	
C219			CC73GCH1H060D	CHIP C	6.0PF	D		C449			CK73GB1H103K	CHIP C	0.010UF	K	
C222			CC73GCH1H151J	CHIP C	150PF	J		C450			C92-0560-05	CHIP-TAN	10UF	6.3W V	
C223			CC73GCH1H070D	CHIP C	7.0PF	D		C451-454			CC73GCH1H101J	CHIP C	100PF	J	
C224			CK73GB1H471K	CHIP C	470PF	K		C456-477			CC73GCH1H101J	CHIP C	100PF	J	
C225			CC73GCH1H151J	CHIP C	150PF	J		C478			CK73GB1C104K	CHIP C	0.10UF	K	
C226-228			CK73GB1H471K	CHIP C	470PF	K		C479			CC73GCH1H271J	CHIP C	270PF	J	
C229,230			CK73GB1C104K	CHIP C	0.10UF	K		C480			CC73GCH1H221J	CHIP C	220PF	J	
C232			CC73GCH1H151J	CHIP C	150PF	J		C481			CK73GB1H102K	CHIP C	1000PF	K	
C233,234			CK73GB1H102K	CHIP C	1000PF	K		C485			CC73GCH1H101J	CHIP C	100PF	J	
C237,238			CK73GB1H102K	CHIP C	1000PF	K		C600			CK73GB1C473K	CHIP C	0.047UF	K	
C302,303			CC73GCH1H040C	CHIP C	4.0PF	C		C601			C92-0003-05	CHIP-TAN	0.47UF	25WV	
C304			CK73GB1H102K	CHIP C	1000PF	K		C602			CK73GB1C104K	CHIP C	0.10UF	K	
C305			CK73GB1H103K	CHIP C	0.010UF	K		C603			CK73GB1C683K	CHIP C	0.068UF	K	
C306-308			CK73GB1H102K	CHIP C	1000PF	K		C604			CK73GB1H103K	CHIP C	0.010UF	K	
C309			C92-0560-05	CHIP-TAN	10UF	6.3WV		C606			CK73GB1H222K	CHIP C	2200PF	K	
C310,311			CK73GB1C104K	CHIP C	0.10UF	K		C607			CC73GCH1H101J	CHIP C	100PF	J	
C312			CK73GB1H103K	CHIP C	0.010UF	K		C608			CK73GB1H103K	CHIP C	0.010UF	K	
C313,314			CC73GCH1H220J	CHIP C	22PF	J		C609			CC73GCH1H121J	CHIP C	120PF	J	
C315			CK73GB1H102K	CHIP C	1000PF	K		C610			CK73GB1H103K	CHIP C	0.010UF	K	
C316			CC73GCH1H820J	CHIP C	82PF	J		C611			CK73GB1E123K	CHIP C	0.012UF	K	
C317			CK73GB1H102K	CHIP C	1000PF	K		C612			C92-0507-05	CHIP-TAN	4.7UF	6.3WV	
C318			CK73GB1C104K	CHIP C	0.10UF	K		C613			CK73GB1H103K	CHIP C	0.010UF	K	
C319			CK73GB1H103K	CHIP C	0.010UF	K		C615			CC73GCH1H200J	CHIP C	20PF	J	
C320			C92-0560-05	CHIP-TAN	10UF	6.3WV		C619			CK73GB1H471K	CHIP C	470PF	K	
C321			CK73GB1C104K	CHIP C	0.10UF	K		C621			CK73GB1C104K	CHIP C	0.10UF	K	
C322			CK73GB1H103K	CHIP C	0.010UF	K		C623			CK73GB1E103K	CHIP C	0.010UF	K	
C323			C92-0560-05	CHIP-TAN	10UF	6.3WV		C625,626			CK73GB1C104K	CHIP C	0.10UF	K	
C327-331			CK73GB1H103K	CHIP C	0.010 UF K	K		C627			CK73GB1H122K	CHIP C	1200PF	K	
C400,401			CC73GCH1H101J	CHIP C	100PF	1		C629,630			CK73GB1H103K	CHIP C	0.010UF K		
C403-411			CC73GCH1H101J	CHIP C	100PF	J		C631,632			CK73GB1C104K	CHIP C	0.10UF	K	
C413			CK73GB1H471K	CHIP C	470PF	K		C633			CK73GB1H103K	CHIP C	0.010UF	K	
C414			CK73GB1H103K	CHIP C	0.010UF	K		C634,635			CK73GB1H562K	CHIP C	5600PF	K	
C415			CK73FB0J 105K	CHIP C	1.0UF	K		C636			CK73GB1C333K	CHIP C	0.033UF	K	
C416,417			CK73GB1H471K	CHIP C	470PF	K		C637			CK73GB1H562K	CHIP C	5600PF	K	
C419			C92-0589-05	CHIP-TAN	47UF	6.3WV		C638			CK73GB1H272K	CHIP C	2700PF	K	
C420		*	C92-0702-05	ELECTRO	47UF	6.3WV		C639			CC73GCH1H090D	CHIP C	9.0PF	D	
C421			CK73GB1H471K	CHIP C	470PF	K		C640,641			CK73GB1H272K	CHIP C	2700PF	K	
C422			CK73FF1C105Z	CHIP C	1.0UF	Z		C642			CC73GCH1H151J	CHIP C	150PF	J	
C423,424			CK73GB1H471K	CHIP C	470PF	K		C643			CK73GB1H122K	CHIP C	1200PF	K	
C425			CK73GB1H103K	CHIP C	0.010UF	K		C644			CK73GB1H102K	CHIP C	1000PF	K	
C426			CK73GB1H471K	CHIP C	470PF	K		C645			CC73GCH1H090D	CHIP C	9.0PF	D	
C427			CK73GB1H103K	CHIP C	0.010UF	K		C646			C92-0560-05	CHIP-TAN	10UF	6.3W V	
C428			C92-0004-05	CHIP-TAN	1.0UF	16WV		C647			CK73GB1C104K	CHIP C	0.10UF	K	
C429			CK73GB1H102K	CHIP C	1000PF	K		C648			CC73GCH1H101J	CHIP C	100PF	J	
C430			CK73FB0) 105K	CHIP C	1.0UF	K		C649-651			CK73GB1C104K	CHIP C	0.10UF	K	
C431			CK73GB1H471K	CHIP C	470PF	K		C652			C92-0507-05	CHIP-TAN	4.7UF	6.3W V	
C432			CK73FB0J 105K	CHIP C	1.0UF	K		C653,654			CK73GB1H472K	CHIP C	4700PF	K	
C433		*	C92-0698-05	ELECTRO	47UF	16WV		C655			CC73GCH1H101J	CHIP C	100PF	J	
C434,435			CK73GB1H471K	CHIP C	470PF	K		C656			CK73FB1H563K	CHIP C	0.056 UF	K	
C436			CK73FF1C105Z	CHIP C	1.0UF	Z		C657			C92-0507-05	CHIP-TAN	4.7UF	6.3W V	
C437			CK73GB1H472K	CHIP C	4700PF	K		C659			CK73GB1C104K	CHIP C	0.10UF	K	
C438			CK73GB1H103K	CHIP C	0.010 UF	K		C660			C92-0560-05	CHIP-TAN	10UF	6.3W V	
C439			CK73GB1E103K	CHIP C	0.010 UF	K		C661			CK73GB1C104K	CHIP C	0.10UF	K	
C440			CK73GB1C273K	CHIP C	0.027UF	K		C663			CK73GB1H102K	CHIP C	1000PF	K	

TX-RX UNIT (X57-5390-10)

TX-RX UNIT (X57-5390-10)

TX-RX UNIT (X57-5390-10)

TK-290

EXPLODED VIEW

PACKING

DISASSEMBLY FOR REPAIR

Disassembly of Front Case and Chassis

1. Remove the 2 screws ($\mathbf{1}$) and a cap fixed screw (2).
2. Press the chassis bottom upwards and remove the clips (3) at the top. The front case is still connected to the chassis by the FPC at this time so be gentle when lifting upwards, otherwise unwanted stress is applied on the FPC.
3. The front case and chassis can only be opened to the side when connected by the FPC (4).

Remove the TX-RX Unit from the Chassis

1. The TX-RX unit cannot be removed simply by removing the seven screws (5).
2. A total of 9 solder connections, 6 on the RF power module ((6) and 3 on the antenna daughter board (7) must be disconnected.

Remove the Universal Connector

1. The universal connector (8) is fastened to the chassis with bouble-side tape.
2. First unsolder the connection on the antenna daughter board (9).
3. Press firmly with a tool such as a screwdriver and so that it can peel (10).
Note : You must replace both parts together when replacing the universal connector or the FPC (11).

Remove the Side Key Assy

1. The side key assy is clips form a slide-hook structure. Lift up gently and take from the side (12).

ADJUSTMENT

Test Equipment Required for Alignment

No.	Test Equipment		Major Specifications
1	Standard Signal Generator (SSG)	Frequency Range Modulation Output	Maximum 600 MHz or more. Frequency modulation and external modulation. $-133 \mathrm{dBm} / 0.05 \mu \mathrm{~V}$ to $7 \mathrm{dBm} / 501 \mathrm{mV}$
2	Power Meter	Input Impedance Operation Frequency Measurement Range	50Ω. Up to 600 MHz . Full scale of 10 W or so.
3	Deviation Meter	Frequency Range	100 to 200 MHz .
4	Digital Volt Meter (DVM)	Measuring Range Accuracy	$\begin{aligned} & \text { FS=18V or so. } \\ & \text { High input impedance for minimum circuit loading. } \end{aligned}$
5	Oscilloscope		DC through 30 MHz .
6	High Sensitivity Frequency Counter	Frequency Range Frequency Stability	Up to 1 GHz or so. 0.2 ppm or less.
7	Ammeter		5A.
8	AF Volt Meter (AF VTVM)	Frequency Range Voltage Range	50 Hz to 1 MHz . 1 mV to 10 V .
9	Audio Generator (AG)	Frequency Range Output	100 Hz to 100 kHz or more. 0 to 1 V .
10	Distortion Meter	Capability Input Level	3% or less at 1 kHz . 50 mV to 10 Vrms .
11	16Ω Dummy Load		Approx. 16, 5W.
12	Regulated Power Supply		5 V to 10 V , approx. 5A Useful if ammeter equipped.
13	Spectrum Analyzer	Measuring Range	DC to 1 GHz or more.
14	Tracking Generator	Center Frequency Frequency Deviation Output Voltage	$\begin{aligned} & 50 \mathrm{kHz} \text { to } 600 \mathrm{MHz} \text {. } \\ & \pm 35 \mathrm{MHz} \text {. } \\ & 100 \mathrm{mV} \text { or more. } \\ & \hline \end{aligned}$

The following parts are required for adjustment

1. Antenna connector adapter

The antenna connector of this radio uses an SMA terminal.

Use an antenna connector adapter [SMA(f) - BNC(f) or SMA(f) - $N(f)$] for adjustment. (The adapter is not provided as an option, so buy a commercially-available one.)

Note

When the antenna connector adapter touches the knob, draw out the knob to mount the connector.

2. Universal connector

Use the interface cable (KPG-36) for PC tuning or the lead wire with plug (E30-3287-08) and screw (N08-0535-08) for panel tuning. Connct the plug to the universal connector of the radio and tighten the screw.

The lead wire with plug (E30-3287-08) and screw (N08-0535-08) terminals are as follows. Numbers are universal connector terminal numbers.

Caution

1. When connecting the plug to the universal connector of the radio, a short circuit may occur. To provent this, be sure to turn the radio POWER switch off.
2. Since the RX AF output is a BTL output, there is a DC component. Isolate this with a capacitor or transformer as shown in the figure.
3. Do not connct an instrument between red or black and GND.

- Universal connector

ADJUSTMENT

- Panel tuning

- PC tuning

Connect the wires to the PCB in the connector case of interface cable.

For output the wires out of the connector case, need to process the connector case.

Repair Jig (Chassis)

Use jig (part No.: A10-1399-03) for repairing the TK-290. Place the TX-RX unit on the jig and fit it with 7 screws.

Note : Supply power from an external power supply (Battery terminal : +, jig (chassis) : -)

How to Remove the Flat Cable

1. Gently draw out both sides of the connector lever uniformly in the direction of the arrow with tweezers.
(CN101, CN400)

2. Gently rise up the connector lever in the direction of the arrow with a fine regular screwdriver or tweezers. (CN1, CN3, CN401, CN403)

Note: Gently push both sides of the connector lever, when put in the flat cable.

ADJUSTMENT

Panel Test Mode

This mode is used for making transceiver connection tests and clearing the memory.

To set Panel test mode, turn on the power with [Side 2] and [PTT] are still held down and then first release [PTT]. This mode cannot be set when disabled with the FPU.

In Panel test mode, when channel or signalling is selected, the signalling that was most recently used is displayed.

Key operations in Panel test mode are as follows.
[Selector switch]: Use to select the test channel.

[PTT]	: For transmit.
[Top 1]	: For down signalling.
[Top 2]	: For up signalling.
[Side 1]	: For setting Panel tuning mode.
[Side 2]	: For switching power between Hi/Low.
	Enter the LCD all lamp mode if held
	down for 2 seconds.
[Orange]	: For monitoring.
[Toggle]	: For switching between Wide/Narrow.

Frequency (MHz)

CH	RX	TX
1	155.1000 (Center)	155.0000 (Center)
2	136.1000 (Low)	136.0000 (Low)
2	$173.9000(\mathrm{Hi})$	$173.9750(\mathrm{Hi})$
4	155.0000	155.0000
5	155.2000	155.2000
6	155.4000	155.4000

Signalling

No.	Encode tone	Decode tone
1	None	None
2	QT 67.0 Hz	QT 67.0 Hz
3	QT 250.3 Hz	QT 25.03 Hz
4	DQT 023 N	DQT 023 N
5	None	2 tone $321.7 / 928.1 \mathrm{~Hz}$
6	DTMF (9)	DTMF (159)
7	MSK PN pattern	None
8	100 Hz square wave	None
9	Single tone 1633 Hz	None

- LCD all lamp mode

- Clear function

Pressing [PTT] while holding down [Orange] in Panel test mode, triggers the clear function which clears all transceiver data settings.

- Panel tuning mode

Press [Side 1] in Panel test mode to set Panel tuning mode.

Note : Different sample displays are shown.

Common Section

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
1. Varicap shift voltage Mid	1) Set panel tuning mode Push Side2 to select VSWM **	DC VTVM	TX-RX	TP2	Panel	Top1/ Top2	-3V	$\pm 0.1 \mathrm{~V}$
High	2) Push Side2 to select VSWH * * *						-6V	$\pm 0.1 \mathrm{~V}$
2. Voltage change frequency Low-Mid RX	1) Set panel tuning mode Push Side2 to select * * * . * * * r1			TP1			4.15 V	$\pm 0.05 \mathrm{~V}$
TX	2) Push Side2 to select * * * . * * * t1						4.15 V	$\pm 0.05 \mathrm{~V}$
$\begin{aligned} & \hline \mathrm{Mid}-\mathrm{Hi} \\ & \mathrm{RX} \end{aligned}$	3) Push Side2 to select * * * $* * *$ r2						4.15 V	$\pm 0.05 \mathrm{~V}$
$\overline{T X}$	4) Push Side 2 to select * * * $* * *$ t2						4.15 V	$\pm 0.05 \mathrm{~V}$

Transmitter Section
Caution : When adjusting transmit power and sensitivity, connect the cable to the SMA antenna connector on the top panel. At this time, use the antenna-less type jig connector (E30-3287-08) in the universal connector.

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
1. Frequency adjustment	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select FRO * * * in panel tuning mode PTT : ON	Power meter f. counter	Panel	ANT	Panel	Top1/ Top2	155.100MHz	$\pm 50 \mathrm{~Hz}$
2. Maximum power check	1) Set panel test mode CH No. : 3 Signalling No. : 1 BATT terminal voltage : 7.5V Select POW 255 in panel tuning mode PTT : ON	Power meter Ammeter	Panel	ANT			Check	5.0W or more
3. TX high power adjustment	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select POW * * * in tuning mode Push Orange to 3 point adjustment mode Select POW * * * L PTT: ON 2) Push Side2 to select POW * * * M PTT: ON 3) Push Side2 to select POW * * * H PTT: ON				Panel	Top1/ Top2	4.70W	$\begin{aligned} & \pm 0.1 \mathrm{~W} \\ & 2.3 \mathrm{~A} \text { or less } \end{aligned}$

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
11. QT deviation adjustment (wide)	1) Set panel tuning mode CH No. : 3 Signalling No. : 1 MIC input : OFF Select QTDV * * * in panel tuning mode Deviation meter filter setting LPF : 3 kHz HPF : 50Hz De-emphasis : 750 μ PTT: ON	Power meter Deviation meter Oscilloscope AG AF VTVM	Panel Side	ANT Universal	Panel	Top1/ Top2	0.75 kHz	$\pm 0.05 \mathrm{kHz}$
12. QT deviation adjustment (narrow)	1) Set panel tuning mode CH No. : 3 Signalling No. : 1 MIC input : OFF Select QTDV * * * in panel tuning mode Turn the toggle SW to the right (narrow) Deviation meter filter setting LPF : 3kHz HPF : 50Hz De-emphasis: $750 \mu \mathrm{~s}$ PTT : ON						0.375 kHz	$\pm 0.05 \mathrm{kHz}$
13. DOT deviation adjustment (wide)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select DQDV * * * in panel tuning mode Deviation meter filter setting LPF: 3 kHz HPF: OFF PTT : ON						0.75 kHz	$\pm 0.05 \mathrm{kHz}$
14. DQT deviation adjustment (narrow)	1) Set panel tuning mode CH No. : 3 Signalling No. : 1 Select DODV * * * in panel tuning mode Turn the toggle SW to the right (narrow) Deviation meter filter setting LPF : 3 kHz HPF: OFF PTT : ON						0.375 kHz	$\pm 0.05 \mathrm{kHz}$
15. DTMF deviation adjustment (wide)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select DTDV * * * in tuning mode Deviation meter filter setting LPF : 15 kHz HPF: OFF PTT: ON						3.0 kHz	$\pm 50 \mathrm{~Hz}$

TK-290

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
16. DTMF deviation adjustment (narrow)	1) Set panel tuning mode CH No. : 3 Signalling No. : 1 Select DTDV * * * in panel tuning mode Turn the toggle SW to the right (narrow) Deviation meter filter setting LPF : 15 kHz HPF: OFF PTT: ON	Power meter Deviation meter Oscilloscope AG AF VTVM	Panel Side	ANT Universal	Panel	Top1/ Top2	1.5 kHz	$\pm 50 \mathrm{~Hz}$
17. MSK deviation adjustment (wide)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select MSDV * * * in panel tuning mode Deviation meter filter setting LPF : 15 kHz HPF: OFF PTT: ON						3.00 kHz	$\pm 50 \mathrm{~Hz}$
18. MSK deviation adjustment (narrow)	1) Set panel tuning mode CH No. : 3 Signalling No. : 1 Select MSDV * * * in panel tuning mode Turn the toggle SW to the right (narrow) Deviation meter filter setting LPF : 15 kHz HPF: OFF PTT : ON						1.50 kHz	$\pm 50 \mathrm{~Hz}$
19. Transmission S/N check (wide)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Deviation meter filter setting LPF : 300 Hz HPF: 3kHz De-emphasis: 750 μ PTT: ON						Check	42 dB or more
20. Transmission S/N check (narrow)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Turn the toggle SW to the right (narrow) Deviation meter filter setting LPF : 300 Hz HPF: 3kHz De-emphasis : 750 $\mu \mathrm{s}$ PTT: ON							37 dB or more
21. BATT detection writing	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select BATT * * * in panel tuning mode PTT: ON	Power meter DC VTVM	Panel Bottom	ANT BATT terminal	Side	Orange	Write the voltage level	6.2 V

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
22. BATT detection check	1) Set panel test mode CH No. : 3 Signalling No. : 1 BATT terminal voltage : 5.7V PTT : ON	Power meter DC VTVM	Panel Bottom	ANT BATT terminal			Check	Cannot transmit LED (TX) blinks
	2) BATT terminal voltage : 6.5 V PTT: ON							Transmit

Receiver Section

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
4. Sensitivity adjustment and check (wide)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select SNS * * * in panel tuning mode Push Orange to 3 point adjustment mode Select SNS * * * L SSG freq. : Low output : $-116 \mathrm{dBm} / 0.35 \mu \mathrm{~V}$ 2) Push Side2 to select SNS * * * M SSG freq. : Center 3) Push Side2 to select SNS * * * H SSG freq. : Hi	SSG AF VTVM Oscilloscope Distortion meter Audio analyzer	Panel Side	ANT Universal	Panel	Top1/ Top2	Adjust for maximum SINAD	12dB SINAD or more
5. Sensitivity check (narrow)	1) Set panel test mode CH No. : 1 Signalling No. : 1 SSG output : $-116 \mathrm{dBm} / 0.35 \mu \mathrm{~V}$ MOD. : 1 kHz DEV. : 1.5 kHz Turn the toggle SW to the right (narrow) 2) Set panel test mode CH No. : 3 Signalling No. : 1 Turn the toggle SW to the right (narrow) 3) Set panel test mode CH No. : 5 Signalling No. : 1 Turn the toggle SW to the right (narrow)						Check	12 dB SINAD or more
6. Tight squelch adjustment (wide)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select SQ T * * * in panel tuning mode				Panel	Top1/ Top2	Normally set to 110	
7. Tight squelch adjustment (narrow)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select SO T * * * in panel tuning mode Turn the toggle SW to the right (narrow)							
8. Squelch adjustment (wide)	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select SQ O $* * * \phi$ in panel tuning mode SSG output : 3dB below to 12dB SINAD level						Adjust to point of opening squelch	

TK-290

ADJUSTMENT

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		$\begin{array}{\|c\|} \hline \text { Test- } \\ \text { equipment } \end{array}$	Unit	Terminal	Unit	Parts	Method	
$\begin{aligned} & \text { 9. Squelch } \\ & \text { adjustment } \\ & \text { (narrow) } \end{aligned}$	1) Set panel test mode CH No. : 3 Signalling No. : 1 Select SO O in panel tuning mode Turn the toggle SW to the right (narrow) SSG output : 3dB below to 12dB SINAD level	AF VTVM Oscilloscope Distortion meter Audio analyzer	$\begin{array}{\|l\|} \hline \text { Panel } \\ \text { Side } \end{array}$	ANT Universa	Panel	$\begin{array}{\|l\|} \hline \text { Top1/ } \\ \text { Top2 } \end{array}$	Adjust to point of opening squelch	
$\begin{aligned} & \hline \text { 10. Squelch } \\ & \text { check } \\ & \text { (wide) } \end{aligned}$							Check	Squelch must be opened
	2) SSG output :-127dBm							Squelch must be closed
$\begin{aligned} & \text { 11. Squelch } \\ & \text { check } \\ & \text { (narrow) } \end{aligned}$	1) Set panel test mode CH No. : 3 Signalling No. : 1 Turn the toggle SW to the right (narrow) \qquad						Check	Squelch must be opened
	2) SSG output: - $127 \mathrm{dBm} / 0.14 \mathrm{~V}$							Squelch must be closed

Adjustment Point

\square Foil side

■ Component side

TK-290
LEVEL DIAGRAM

TK-290 pc board views

pC boARd VIEWS TK-290

CONTROL UNIT (X53-3780-XX) (B~F/6) -10: K -11: K2 Component side view

TK-290 pc board views

TX-RX UNIT (X57-5390-10) Component side view

TK-290 TK-290
 BLOCK DIAGRAM

CN No.	Pin No.	Name	I/O	Function
	$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \\ & 33 \end{aligned}$	NC KCK KRS INAFC EXAFC AMPSW OPPTT TCONT	$\begin{aligned} & \text { \| } \\ & \text { 1 } \\ & \text { i } \\ & \text { i } \end{aligned}$	Not use. Key scan IC clock data input. Key scan IC reset input. Internal speaker switch input. External speaker switch input. Audio AMP control switch input. For optional board. (See page 22.) For optional board. (See page 22.)
$\begin{aligned} & \hline \text { CN2 } \\ & \text { for X57 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { AFE } \\ & \text { AFE } \end{aligned}$	-	Audio GND. Audio GND.
CN3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Q8 Q7 PTTE PTT K11 Q6	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ - \\ 1 \\ 1 \\ 0 \\ \hline \end{array}$	Key scan IC Q8 signal output. Key scan IC 07 signal output. PTT GND. Normally : 5V, transmit when connected GND. Key input. Key scan IC O6 signal output.
CN4	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	+	$\begin{aligned} & - \\ & - \end{aligned}$	BTL + output for internal speaker. BTL - output for internal speaker.
CONTROL UNIT (X53-3780-XX) (B/6)				
CN101 for $\times 57$	1 2 3 4 5 6 7 8 9 10 11 12	E TOGGLE KI2 Q6 07 CE CL DI LAMP TX LED BLED 5M		GND. Normally : 5V, switched toggle when connected GND. Key output. Key scan IC O6 signal input. Key scan IC Q7 signal input. Chip select input for LCD driver. Clock data input for LCD driver. Data input for LCD driver. Backlight LED control. Normally : OV, Lighting : 7.5V TX LED control. Normally : OV, Lighting : 7.5V Busy LED control. Normally : 0V, Lighting : 7.5V 5 V .

KNB-17A External Vlew

KNB-17A Circuit Diagram

KNB-17A Specifications

Voltage ..

Charging current (Projections include
Charger and charging time
KSC-19 (Normal Charger) Approx. 8 hours KSC-20 (Rapid charger) Approx. 1.3 hour
\qquad

KMC-25/26 (SPEAKER MICROPHONE)

KMC-26 External View
Note: Stubby antenna are options

KMC-25/26 Specifications

Microphone
\qquad
Sensitivity.
2k
Speaker
Impedance
$-65 \mathrm{~dB} \pm 4.0 \mathrm{~dB}$ at 1 kHz

Input16
0.5W

Maximum input 1.5W
Dimensions $62 \mathrm{~W} \times 81 \mathrm{H} \times 29 \mathrm{D}(\mathrm{mm})$
Weight (With plug cord) Approx. 0.17 kg

KMC-25/26 Circuit Diagram

KMC-25/26
Parts List

* : New parts

Ref. No.	New parts	Parts No.	Description	Model
	*	A02-2092-08 A02-2253-08 A02-2093-08 A02-2254-08 B09-0382-08 D10-0629-08 E30-3287-08 E30-3322-08 J29-0644-08 J42-0495-08 S70-0459-08 T07-0359-08 T91-0584-08 N08-0535-08	Case (Front) Case (Front) Case (Rear) Case (Rear) Cap (Phone) Lever (PTT) Lead wire with plug assy Lead wire with plug assy Clip assy Bushing Tact switch Speaker MIC element Dressed screw	$\begin{aligned} & 25 \\ & 26 \\ & 25 \\ & 26 \\ & \\ & \\ & 25 \\ & 26 \end{aligned}$

TK-290

KSC-19 (CHARGER) / KSC-20 (RAPID CHARGER) / KPG-36 (PROGRAMMING INTERFACE CABLE) / KRA-14 (HELICAL ANTENNA)

KSC-19 External View

KSC-19 Charging
KNB-17A
Voltage
7.2 V

Battery capacity
1500 mAh
Charging time
Approx. 8 hours

KSC-20 External View

KSC-20
Specifications
Charging current
$1100 \mathrm{~mA} \pm 150 \mathrm{~mA}$
Charging time KNB-17A : $80 \mathrm{~min} . \pm 24 \%$
Source voltage Approx 15V
Ambient temperature
$0^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
Dimensions $105 \mathrm{~W} \times 135 \mathrm{D} \times 52 \mathrm{H}(\mathrm{mm})$ Weight 0.18 kg

KPG-36 External View

KRA-14 External View
M : 148~162MHz
M2 : 162~174MHz
M3 : 130~159MHz

SPECIFICATIONS

GENERAL
Frequency Range 136 to 174 MHz
Number of Channels 160 channels
Channel Spacing Wide : $25 \mathrm{kHz}, 30 \mathrm{kHz}$, Narrow : $12.5 \mathrm{kHz}, 25 \mathrm{kHz}$(PLL channel step $5 \mathrm{kHz}, 6.25 \mathrm{kHz}, 7.5 \mathrm{kHz}$)
Battery Voltage 7.5V DC $\pm 20 \%$
Battery Life 10 hours at 5W (5-5-90 duty cycle)
Temperature Range $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Dimensions and Weight 6-3/32" (155mm) H x 2-5/16" (58mm) W x 1-1/2" (38mm) D, $1.25 \mathrm{lbs}(565 \mathrm{~g})$
With Keypad Model 6-3/32" (155mm) H x 2-5/16" (58mm) W x 1-9/16" (39.5mm) D
RECEIVER (Measurements made per EIA standard EIA-316-B)
Sensitivity
EIA 12dB SINAD $0.25 \mu \mathrm{~V}$
20dB Quieting $0.35 \mu \mathrm{~V}$
Selectivity Wide : -75 dB , Narrow : -70 dB
Intermodulation Wide : -75 dB , Narrow : -68 dB
Spurious and Image Rejection $-75 \mathrm{~dB}$
Audio Power Output 500 mW at less than 3% distortion
Frequency Stability $\pm 0.00025 \%$ from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Channel Frequency Spread 38 MHz
TRANSMITTER Measurements made per EIA standard EIA-316-B)
RF Power Output $\mathrm{Hi}: 5 \mathrm{~W}$, Low : 1 W
Spurious and Harmonics. -70dB
Type of Emission F3E, $\pm 5 \mathrm{kHz}$ for 100% at 1000 Hz
FM Noise Wide : -45dB, Narrow : -40dB
Audio Distortion Less than 3.0% at 1000 Hz
Frequency Stability $\pm 0.00025 \%$ from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Channel Frequency Spread 38 MHz

KENWOOD CORPORATION
14-6, Dogenzaka 1-chome, Shibuya-ku, Tokyo 150-8501, Japan
KENWOOD SERVICE CORPORATION
P.O. BOX 22745, 2201 East Dominguez Street, Long Beach, CA 90801-5745, U.S.A.

KENWOOD ELECTRONICS LATIN AMERICA S.A.
P.O. BOX $55-2791$ Piso 6 Plaza Chase CI. 47 y Aquilino de la Guardio Panama, Republic of Panama

KENWOOD ELECTRONICS CANADA INC.
6070 Kestrel Road, Mississauga, Ontario, Canada L5T 1S8
KENWOOD ELECTRONICS DEUTSCHLAND GMBH
Rembrücker Str. 15, 63150 Heusenstamm, Germany
KENWOOD ELECTRONICS BELGIUM N.V.
Mechelsesteenweg 418 B-1930 Zaventem, Belgium
KENWOOD ELECTRONICS FRANCE S.A.
13, Boulevard Ney, 75018 Paris, France
KENWOOD ELECTRONICS U.K. LIMITED
KENWOOD House, Dwight Road, Watford, Herts., WD1 8EB United Kingdom
KENWOOD ELECTRONICS EUROPE B.V.
Amsterdamseweg 37, 1422 AC Uithoorn, The Netherlands
KENWOOD ELECTRONICS ITALIA S.p.A.
Via G. Sirtori, 7/9 20129 Milano, Italy
KENWOOD IBERICA S.A.
Bolivia, 239-08020 Barcelona, Spain
KENWOOD ELECTRONICS AUSTRALIA PTY. LTD.
(A.C.N. 001499 074)
P.O. Box 504, 8 Figtree Drive, Australia Centre, Homebush, N.S.W. 2140, Australia

KENWOOD \& LEE ELECTRONICS, LTD.
Unit 3712-3724, Level 37, Tower one Metroplaza, 223 Hing Fong Road, Kwai Fong, N.T., Hong Kong

