

centents

GENERAL2
SYSTEM SET-UP 4
OPERATING FEATURES 5
INSTALLATION 16
BLOCK DIAGRAM 23
LEVEL DIAGRAM 25
CIRCUIT DESCRIPTION 27
SEMICONDUCTOR DATA 34
DESCRIPTION OF COMPONENTS 39
PARTS LIST 41
EXPLODED VIEW 55
PACKING 56
ADULSTMENT 57
TERMINAL FUNCTION 63
PCBOARD VIEWS
LCD ASSY (B38-0731-05) 65
PLL/VCO ($558-4170-X X)$ 66
TX-RX UNIT ($\times 57-4590-X X)(B / 2)$ 67
TX-RX UNIT (X57-4590-XX) (A/2) 71
SCHEMATIC DIAGRAM 77
SPECIFICATIONS 83
KCT-19 (ACCESSORY CONNECTION CABLE) BACK COVER
KDD-4 (DTMF DECODER) BACK COVER
KPG-25D (PROGRAMMING DISK)
BACK COVER

TK-940/941

GENERAL

INTRODUCTION

SCOPE OF THIS MANUAL

This manual is intended for use by experienced technicians familiar with similar types of commercial grade communications equipment. It contains all required service information for the equipment and is current as of the publication data. Changes which may occur after publication are covered by either Service Bulletins or Manual Revisions. These are issued as required.

ORDERING REPLACEMENT PARTS

When ordering replacement parts or equipment information, the full part identification number should be included. This applies to all parts : components, kits, or chassis. If the part number is not known, include the chassis or kit number of which it is a part, and a sufficient description of the required component for proper identification.

PERSONNEL SAFETY

The following precautions are recommended for personnel safety:

- DO NOT transmit if someone is within two feet 10.6 meter) of the antenna.
- DO NOT transmit until all RF connectors are verified secure and any open connectors are properly terminated
- SMUTOFF and DO NOT operate this equipment near electrical blasting caps or in an explosive atnosphere
- All equinment should be properiy grounded before power-up for safe operation.
- This equipment should be serviced by a qualified technician only.

FCC COMPLIANCE AND TYPE NUMBERS

Type acceptance number	Frequency range	Compliance
ALHTK-940-1	$806 \sim 870 \mathrm{MHz}$	Part 90
ALHTK-941-1	$896 \sim 941 \mathrm{MHz}$	Part 90

PRE-INSTALLATION CONSIDERATIONS

1. UNPACKING

Unpack the radio from its shipping container and check for accessory items. If any item is missing, please contact KENWOOD immediately.

2. LICENSING REQUIREMENTS

Federal regulations require a station license for each radio installation (mobile or base) be obtained by the equipment owner. The licensee is responsible for ensuring transmitter power, frequency, and deviation are within the limits permitted by the station license.

Transmitter adjustments may be performed only by a licensed technician holding an FCC first, second or general class commercial radiotelephone operator's license. There is no license required to install or operate the radio.

3. PRE-INSTALLATION CHECKOUT

3-1. Introduction

Each radio is adjusted and tested before shipment. However, it is recommended that receiver and transmitter operation be checked for proper operation before installation.

3-2 Testing

The radio should be tested complete with all cabling and accessories as they will be connected in the final installation. Transmitter frequency, deviation, and power output should be checked, as should receiver sensitivity, squelch operation, and audio output. RT, equipment operation should be verified.

TK-940/941

GENERAL

4. PLANNING THE INSTALLATION

4-1. General

Inspect the vehicle and determine how and where the radio antenna and accessories will be mounted.

Plan cable runs for protection against pinching or crushing wiring, and radio installation to prevent overheating.

4-2. Antenna

The favored location for an antenna is in the center of a large, flat conductive area, usually at the roof center. The trunk lid is preferred, bond the trunk lid and vehicle chassis using ground straps to ensure the lid is at chassis ground

4-3. Radio

The universal mount bracket allows the radio to be mounted in a variety of ways. Be sure the mounting surface is adequate to support the radio's weight. Allow sufficient space around the radio for air cooling. Position the radio close enough to the vehicle operator to permit easy access to the controls when driving.

4-4. DC Power and wiring

1. This radio may be installed in negative ground electrical systems only. Reverse polarity will cause the cable fuse to blow. Check the vehicle ground polarity before installation to prevent wasted time and effort.
2. Connect the positive power lead directly to the vehicle battery positive terminal. Connecting the Positive lead to any other positive voltage source in the vehicle is not recommended.

CAUTION

If $D C$ power is to be controlled by the vehicle ignition switch, a switching relay should be used to switch the positive power lead. The vehicle ignition switch then controls $D C$ to the relay coil.
3. Connect the ground lead directly to the battery negative terminal.
4. The cable provided with the radio is sufficient to handle the maximum radio current demand. If the cable must be extended, be sure the additional wire is sufficient for the current to be carried and length of the added lead.

5. INSTALLATION PLANNING - CONTROL STATIONS

5-1. Antenna system

Control station. The antenna system selection depends on many factors and is beyond the scope of this manual. Your KENWOOD dealer can help you select an antenna system that will best serve your particular needs.

5-2. Radio location

Select a convenient location for your control station radio which is as close as practical to the antenna cable entry point. Secondly, use your system's power supply (which supplies the voltage and current required for your system). Make sure sufficient air can flow around the radio and power supply to allow adequate cooling.

SERVICE

This radio is designed for easy servicing. Refer to the schematic diagrams, printed circuit board views, and alignment procedures contained in this manual.

Note

When you modify your radio as described in system set-up, take the following precaution.

The rating of pin $7(\mathrm{SB})$ of the accessory connector cable (KCT-19) on the rear of the radio is 13.6 V (1A). Insert a 1A fuse if you use the SB pin for external equipment.

If you do not intend to use the $3.5-\mathrm{mm}$ jack for the external speaker, fit the supplied speaker-jack cap (B09-0235-XX) to stop dust and sand getting in.

OPERATING FEATURES

1. Operation Features

The TK-940/941 is an $800 / 900 \mathrm{MHz}$-band EFJ LTR™compatible trunked radio designed to operate in both trunked and conventional modes. The programmable features are summarized.

1-1. General Transceiver Features

- Any combination of 32 (MAX) trunked and conventional systems programmable.
- Up to 250 (MAX) groups are programmable in each system.
- 8 -digit alphanumeric characters are programmable for each group.
- Types system scan is selectable.
- System lockout for scanning.
- Time-out timer (Dispatoh/Telephone)
- CALL indicator
- Clear-to-talk
- External DTMF decoder (The optional KDD-4 DTMF decoder is required.)
- Test mode
- Horn alert port
- Data port

1-2. Trunked System Features

The following features are available with systems programmed for trunked transceiver operation.

- Group Scan
- Transmit Inhibit
- Telephone Interconnect (The optional microphone with DTMF pad is required.)
- Free System Ringback (This feature is available only when a telephone interconnect ID code is selected.)
- AUTO TEL (This feature is available only when a telephone interconnect ID code is selected.)
- Transpond.
- Talk-around (Can be set for each group.)
- System Search

1-3. Conventional System Features

The following features are available with systems programmed for conventional transceiver operation.

- Up to 250 (MAX) channels are programmable in each system. (Channels are selected using the GROUP key.)
- Carrier squelch and QT/DOT operation
- Transmit.Disable (Receive-only channel)
- Talk-around (Can be set for each group.)
- Busy Chanñel Lockout (Can be setfor each group.)

2. Transceiver Controls and Indicators (Fig. 1) 2-1. Font Panel Controls

All the keys on the front panel are momentary-type push buttons. The functions of these keys are explained below.

- POWER key

Transceiver POWER key. When the power is switched off, all the parameters, such as the system and group, are stored in memory. When the power is switched on again, the system returns to the previous conditions.

- SYSTEM UP/DOWN key

When the SYSTEM UP/DOWN key is pressed, the system number to be selected is incremented or decremented by one. When the key is held down, the system number changes continuously. After the system number reaches the highest system number, it goes back to the lowest system number. System numbers not set are skipped.

- GROUP UP/DOWN key

This key is operated in the same way as the SYSTEM UP/DOWN key. When the system number is changed, the GROUP indicator shows the original group number (the last selected group number in each system). The group to be set may differ by system.

- SCAN key

Each time this key is pressed; the system scan function is toggled on and off, The function of this key can be disabled by programming

TK-940/941

OPERATING FEATURES

- AUX key

This key toggles the auxiliary function on and off. If this key is pressed once, the auxiliary function is enabled. If the key is pressed again, the auxiliary function is disabled. The confirmation tone is the same as that of the scan key. The following auxiliary functions are available and can be programmed by the FPU:

1) Horn alert
2) Manual relay
3) System scan delete function
4) Fixed revert system call (invalid if the system is not set)
5) Switching between alphanumeric display and system/group indicator (toggle)
(Invalid if the alphanumeric display is not set) When the alphanumeric display is selected, the confirmation tone is output for about 50 ms . When the system/group indicator is selected, the confirmation tone is output twice (output 50 ms , off 50 ms , output 50 ms).
6) AUTO TEL
7) Option signalling reset
8) Invalid

2-2. Front Panel Displays and Indicators
 - System display

Indicates the selected system number (1~MAX 32). Only the programmed systems are displayed. The system display is located above the SYSTEM UP/ DOWN key.

- Group display

Shows the selected group number (1~MAX 250). Zero indicates group 10. Only the programmed groups are displayed. The group display is located above the GROUP UP/DOWN key

- Scan indicator

The (S) mark on the display goes on in system scan mode.

- Delete () indicator

When a system locked out of the system scan sequence is selected, the mark on the display goes on. The mark flashes if there is a locked system during fixed system scan. It does not light continuously or flash during list type scan.)

- BUSY indicator

The BUSY indicator goes on if the PTT button is pressed when the trunked system is busy or while a TX inhibit ID is being received.

- CALL indicator

The CALL indicator can be programmed so that it goes on when a specified call is received. This indicator goes off when any front panel key is pressed.

If the KDD-4 is installed and the call flag is Y, this indicator does not go on unless the DTMF code matches.

TK-940/941

OPERATING FEATURES

- Alphanumeric display

The 8 -digit alphanumeric (A / N) display also shows system and group numbers. 8-digit alphanumeric displays can be programmed for each group. If the alphanumeric display is not programmed, the system and group numbers are displayed.

After the dealer's qualified service technician programs the transceiver, the alphanumeric display shows system numbers and group numbers for your specific network.

- TA indicator

Appears when the Talk-around system/group is selected.

- OPT indictor

Displays the KDD-4 decode latch of optional signaling.

- AUX (Auxiliary) indicator

Appears when the manual relay or horn alert function is activated (ON) by pressing the AUX key.

- Handset indicator

Appears when a group is selected that is programmed with telephone IDs. (It flashes during AUTO TEL.)

3. Details of Features

3-1. System Scan

System scan can be selected with the "SCAN" key by programming the scan feature. When the "SCAN" key is pressed and the (S) mark appears, scan mode is entered. Scanning starts from the system following the currently displayed system. When scanning, "-SCAN-" is indicated on the alphanumeric display. When a call is received, scanning stops, and the system and group are displayed.

When the system or group or volume (AUX) key is pressed during scanning, the scan stops and the revert system or group can be changed. Scanning resumes one second after the key is released. If the scan feature is not programmed, the "SCAN" key on the front panel is ineffective.

3-2. System Lockout

The system lockout feature is used to lock systems out of the scan sequence, and can be selected by programming in the following two ways:

- Fixed lockout

The system to be locked out is selected by programming. When a locked system is selected, the Delete () indicator appears on the left of the SYSTEM indicator. The revert system is scanned even if it is locked out. If there is a locked system, the Delete $(\boldsymbol{)}$) indicator flashes during fixed scanning. (It does not light continuously or flash during list type scan.)

- User selectable lockout

If the AUX (Auxiliary) key is programmed for the scan lockout feature, the user can lock systems out of the scan sequence with the AUX key. To lock a system out of the scan sequence, press the AUX key when the system is displayed. The Delete (\mid indicator is displayed on the left of the SYSTEM indicator.

To unlock a system, select the system and press the AUX key. The Delete () indicator disappears to indicate that the system has returned to the scan sequence. The revert system is scanned even if it is locked out. If there a locked system, the Delete (\boldsymbol{D}) indicator flashes during fixed scanning. (It does not light continuously or flash during list type scan.) If all systems are locked out, the scan stops and only the revert system is received.

If another function is assigned to the AUX (Auxiliary) key, the USER SELECTABLE LOCKOUT feature does not function.

3-3. Drop-Out Delay Time (Scan Resume Time)

If a call is received during scan, the scan stops. The scan resume time can be programmed as 0 to 254 seconds in one-second increments. The default value is 3 seconds.

3-4. Dwell Time

The dwell time is the time after transmission ends until the scan resumes in scan mode. It can be set to 0 to 254 seconds by programming. The default value is 15 seconds.

OPERATING FEATURES

3-5. System/Group Revert

System/Group revert can be programmed for one of the following:

- Last call revert

The system or group changes to the revert system or group when a call is received with the system or group being scanned

- Last use revert

If a system/group call is received during scanning and the PTT button is pressed for transmission and response within the drop out delay time, the system or group is assigned as the new revert system or group.

3-6. Scan Message Wait

The time for staying with the home repeater that receives a signal during system scan and monitoring data messages can be programmed. If there is no signal from the home repeater, the system is scanned for about 50 ms . If there is a signal, three data messages are monitored. Normally, three data messages are monitored for each system, and it can be increased in multiples of three data messages per line to up to eight lines.

If the repeater data message indicates that there is no call, data monitoring is terminated and the home repeater of the next system is scanned.

3-7. Call Indicator

The call indicator can be programmed for each group. In trunked systems, it can be set to respond to a selectable decode ID or one of two fixed IDs, except block IDs. When a call is received with a selectable decode ID, the call indicator flashes. When a call is received with a fixed ID, the call indicator lights continuously.

In a conventional system, the call indicator can be programmed to light for each QT or DOT code. It keeps flashing while a call is being received. It is turned off by pressing any front panel key.

3-8. Time-Out Timer

The time-out timer can be programmed in $15 \mathrm{sec}-$ onds increments from 15 seconds to ten minutes for dispatch and interconnect operations. If the transmitter is keyed continuously for longer than the programmed time, the transmitter is disabled and a warning tone sounds while the PTT button is held down. The alert tonestops when the PTT button is released. The default value is one minute for dispatch and three minutes for intercomnect.

3-9. Priority ID Codes

The priority of the programmable decode ID codes for each system is as follows:

1) Fixed ID code 1
2) Fixed ID code 2
3) Selected ID code
4) Other selectable ID codes (Group scan only)
5) Block decode codes

When a call with a higher priority is received, that call is received immediately (except when the transceiver is trunked out).

3-10. Group Scan Operation

Group scan can be programmed for each group. In addition to the ID codes of the selected group, the ID codes of the other groups that are permitted for group scan are decoded. (The two fixed ID and block decode codes are always decoded.)

If, during group scanning, a call is received with one of the selectable group ID codes for which group scan is enabled, the group display indicates the group number that the call came in with. That group then becomes the new selected group. Group scan resumes after the specified drop-out delay time or dwell time shared by the system scan elapses.

3-11. Transmit Inhibit

The transceiver can be programmed with a transmit inhibit block of ID codes. If an ID code within this block is decoded the preset time before the PTT button is pressed, transmission is inhibited. The BUSY indicator lights and a busy tone sounds until the РTT button is released to indicate that transmission is not possible (except clear-to-talk mode).

Transmission with the group for which the encode ID is not set is inhibited, and the busy tone is output while the PTT button is held down, regardless of the clear-to-talk setting.

3-12. TEL ID Codes (TEL MODE)

The ID code in the TEL ID block can be used to make a phone call by programming the block. To make a phone calls, an optional DTMF microphone is required.

OPERATING FEATURES

3-13. Free System Ringback

This feature is available only when a telephone interconnect ID code is selected. If a busy tone sounds when the PTT button is pressed, the transceiver enters this mode automatically.

When the PTT button is released, a beep sounds for 400 ms to indicate that the mode has been entered. If the scan is on, it is resumed (the (S) mark goes on.) When any repeater becomes available, a ringing tone sounds and this mode ends.

The mode is terminated when the system, group, scan, PTT, or AUX key is changed.

3-14. System Search

This feature can be programmed to automatically access other programmed systems when the selected system cannot be accessed. If an intercept tone sounds when the PTT button is pressed after setting the mode, the transceiver has entered the mode.

If the group ID is a telephone interconnect ID, the transceiver then attempts to access, in succession, other systems that have a telephone interconnect ID in the revert group location. If the group ID is a dispatch ID, the transceiver attempts to access other systems that have a dispatch ID programmed in the revert group location.

If there is no system to be accessed, an intercept tone sounds, the mode is terminated, and the transceiver returns to the first system. If the access is successful, the mode is terminated, and the searched system becomes the new selected system. (If during scanning, the scan stops.)

3-15. Transpond

This feature can be programmed to turn on and off for each group. If the ID of the group for which transpond is enabled is received, two data messages (transmit ID and turn-off code) are automatically transmitted If the PTT button is not pressed as a response within the time set $(0$ to 254 seconds in 1 -second increments). If the PTT button is pressed within the time, or The signaling option has been set, the transpond is noteperformed.

316. Talk-Around

Whis teature can be programmed to turn on or off for each groun. When the PTT button is pressed for the group tow whe the tak-around feature is set, the home We enterchamelisused for transmission, and the repeateytik operationis not performed. Signaling must TBUntrot
5. Sel, proceed tone is output at the mission. If both interconnect and Wedakround operation is not per-

3-17. Preferred System Revert

This feature is available by assigning this feature to the AUX (Auxiliary) key. The feature is used to move the revert system/group to the fixed programmed system/group quickly. When the AUX key is pressed during scanning, the scan stops temporarily, and the revert system/group is displayed. The scan resumes about one second after the AUX key is released.

3-18. Alphanumeric Display Select

The system/group number display and the alphanumeric display can be switched with the AUX key by assigning this feature to the key. Figure 2 shows the characters that can be displayed. These are basic characters, and can be displayed in each segment. Four digits can be displayed at the same time.

Fig. 2

OPERATING FEATURES

3-19. AUTO TEL

A telephone interconnect call can be made by simply pressing the AUX (Auxiliary) key by assigning this feature to the key. This feature accesses the TEL channel of the available system automatically.

When the AUX key is pressed, a queue tone is output, and the "AUTO TEL" appears on the alphanumeric display along with a flashing handset indicator (\boldsymbol{J}) to indicate that this mode has been entered. If the TEL ID is set for the revert system, the TEL channel of that system is accessed. If al! TEL channels are busy, an attempt is made to access the TEL channels of another system in which the TEL ID code has been programmed. It is repeated for 60 seconds until the access succeeds. If the access succeeds, a dial tone returns from the repeater. If the AUX key is pressed again when the queue tone is sounding, this mode is canceled.

If the access fails after 60 seconds, a deny tone is output and this mode is terminated. When the talk ends, the revert system/group returns. When the scan mode is effective, the scan resumes. The AUTO TEL feature can be programmed to turn on or off for each system.

3-20. Audible User Feedback Tones

The transceiver outputs various combinations of three tones (high, mid, and low) to notify the user of the transceiver operating state. The main tones are listed below. The high tone is 1460 Hz , the mid tone is 980 Hz , the and low tone is 730 Hz .

- Busy tone

This tone is output when the PTT button is pressed but no repeater is available and transmission is not possible. It is output until transmission is enabled while the PTT button is held down and transmission starts, or until the PTT button is released. (The mid tone and low tone are output alternately in 150 ms intervals.)

- Intercept tone

This tone indicates that the transceiver is out of range. It indicates that the PTT button is pressed, and transmission has started, but the repeater cannot be connected and talking is not possible. It is output until the PTT button is released. (The mid tone and low tone are output alternately in 200 ms intervals.)

- Delay tone

This tone is output when the PTT button is pressed and the repeater is accessed three times or more to indicate connection with the repeater is delayed. This tone is the same as the Busy tone. (It is not output of CLEAR TO TALK has been set to YES.)

- Proceed tone

This tone is output when the PTT button is pressed, transmission starts, and the repeater is connected to indicate that the user can talk if the Clear-to-Talk function has been set. (The high tone is output for 100 ms .)

- Queue tone

This tone is output until the AUTO TEL function is set and the TEL channel is accepted successfully. (The mid tone on for 50 ms , off for 50 ms , and on for 50 ms in 1 second intervals.)

- Deny tone

This tone is output if the AUJTO TEL function is set, the queue tone is output, but the TEL channel cannot be accessed within 60 seconds. It is similar to the intercept tone. (The mid tone and low tone are output alternately in 150 ms intervals.)

3-21. Clear-to-Talk

This feature can be programmed to turn on or off.

- Clear-to-talk operation (Set to ON)

If a dispatch ID is used and the PTT button is pressed when no repeater can transmit, a busy tone is not output lit is output when an interconnect ID is used). If transmission becomes possible while the PT button is held down, transmission starts.

When connection with the repeater is completed, a proceed tone is output. The delay tone is not output in this mode. (It is output when an interconnect ID is used.)

- Normal operation (Set to OFF)

If the PTT button sipessed when there is no repeater that can IDaspit siends ino free repeater or TX inhibit is enabsed. a busy tone is output. If transmission becomes possible while the PTT button is held down tansmission stats, the delay tone is output if link operation is: De formed three to six times.

TK-940/941

OPERATING FEATURES

3-22. Conventional System Operation

Up to 250 (MAX) channels can be programmed for each system programmed as a conventional system. Channels can be selected by the group key.

OT (Quiet-Talk), DQT (Digital Quiet-Talk), or carrier squeich can be set for transmit or receive channels. If signaling is set for transmission, a squelch tail eliminator (reverse burst or turn-off code) is transmitted.

- Talk-around

The Talk-around feature can be programmed for each channel.

- Transmit disable (receive-only channels)

Transmission can be programmed to be inhibited for each channel. This feature is used to set receive-only channels. When the PTT button is pressed on a re-ceive-only channel, a busy tone sounds, and transmission is not performed.

- Busy channel lockout

The busy channel lockout feature can be programmed for each channel. If a channel is locked out by pressing the PTT button, a busy tone is output, and if transmission becomes possible, it starts.

- Scanning conventional systems

For the conventional system scan, only the revert channel of each system is scanned. If QT or DOT is set for the channel, the channels, including signaling, are scanned.

The KDD-4 can be set with the decode ID of each group. If it is supported, the following features are available:

- Audio mute

If the decode latch input port is low during reception and the LTR data or signaling matches (when the squelch is open if signaling is not set), the audio is output.

During system/group scanning, the "-SCAN-" display changes to the system/group display (or alphanumeric display). If it is the last call, the revert system/ group returns.

- Call indicator, alert tone

If the Decode Latch input port changes from high to low during reception and the LTR data or signaling matches (when the squelch is open if signaling is not set), a KDD-4 alert tone is output. CALL lights or flashes (or nothing occurs) according to the CALL indicator set for each group.

The CALL indicator/KDD-4 alert tone does not operate unless the Decode Latch input port goes high.

- Operation during scan

If signaling matches during scanning, the scan stops at the system. The display shows "-SCAN-" until the Decode Latch input port goes low. When the port goes low, the system/group is displayed.

3-23. External Decoder (KDD-4 Option)

The optional DTMF decoder (KDD-4) can be installed in the transceiver. Use of the optional decoder can be programmed for each group (for each channel of a conventional system). The monitor key functions as the external decoder reset key

TK-940/941

OPERATING FEATURES

3-24. Horn Alert

Horn alert can be set to on or off for each group. Either continuous or non-continuous operation can be set by the FPU. The horn alert port is enabled or disabled as follows;

Offhook horn	Hook off	Hook on
Enable	O	0
Disable	\times	0

- Non-continuous

If Horn alert has been set to YES for a group and DEC ID/OT/DOT matches, the horn alert port, HOR, is turned on and off as follows;

The timing when the fixed LTR ID matches is as follows;

The group for which the optional signaling is set works by ANDing the decode ID with the optional signaling.

- Continuous

Reset with the AUX key or by setting offhook.

3-25. System Scan Type

- Fix system scan

All the set systems except locked-out ones are scanned If the DEL/ADD feature is assigned to the AUX key, it can be controlled from the front panel.

- List type scan

A scan list can be set for each system.
The list to be scanned can be changed by changing the display system.

If many systems have been set, the scan speed can be increased by narrowing the systems to be scanned with scan lists.

3-26. Data Port

The following ports are available for external equipment when the KCT-19 is used.

- Terminal functions (Digital)

HOR Horn alert port. For details of operations see the Horn alert section.
SQ When a carrier is received, 5 V is output. When the carrier disappears, 0 V returns.
LOK Goes low (OV) when communication becomes possible.

1) When a repeater is linked by LTR.
2) When transmission is started by pressing PTT when using LTR in TA mode.
3) When transmission is started by pressing PTT in the conventional mode.
DTC When it goes low (0 V), the last group in the system is gone to. When it goes high (5 V), the original group returns.
TXD Serial communication output from the internal MPU to external equipment.
RXD Serial communication input from external equipment to the internal MPU.

TK-940/941

OPERATING FEATURES

4. Transceiver Programming

4-1. Introduction

The TK-940/941 transceiver is programmed using an IBM PC or compatible machine, a programming interface (KPG-4), and a programming disk (KPG-25D). Figure 4 shows the setup for an IBM PC.

Fig. 4

4-2. KPG-4 Description

(Optional PC programming interface cable)

The KPG-4 is reeded to connect the TK-940/941 to the computer. It has a circuit in the D-subconnector (25-pin) case that converts the RS-232C logic level to TTL level. The KPG-4 plug is connected to external socket of the TK-940/941 and to the computer by a conversion cable (option) with a 9 -pin female connector and a 25-pin male connector.

4-3. Programming Software Description

KPG-25D is the programming software for the TK940/941, supplied on a $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$ floppy disk. This software runs under MS-DOS (version 3.3 or later) on an IBM X T, AT, or PS2, or on a compatible machine. Data cal, ve input to or read from the TK-940/941, and edited on the screen. Programmed data can be printed.

4

4-4. Data Program Mode

In this mode, data is written into the flash memory in the transceiver, When the power is turned on, data program mode can be entered immediately. When the KPG-4 is connected and commands can be received, "PROGRAM" is displayed to indicate that data program mode has been entered.

Tuning can be done using an IBM PC and KPG-25D, in the same way as in panel tuning mode. You can carry out panel tuning by selecting test mode on the KPG-25D menu screen and following the instructions on the screen. See the KPG-25D instruction manual for details.

OPERATING FEATURES

4-5. Clone Mode (Figure 5)

Programmed data is transferred from one transceiver to another by using a microphone cable

1. Connect the master set to the slave set with.
2. Turn the slave set on
3. Hold down the AUJX key, turn the master set on, and keep the AUX key down for two more seconds. "CLONE" appears on the display to indicate that clone mode has been entered.
4. Press the SCAN key on the master set.

The (S) mark appears and data is sent from the master set to the slave set. "PROGRAM" appears on the slave set to show that it is receiving data.
5. When cloning is complete, the (S) mark on the master set disappears and "CL.ONE" changes to "END". The slave set is automatically reset and enters user mode.

If cloning fails, the master set shows "ERROR". Repeat steps 4 and 5 .

If you wish to clone several sets, switch each of them on and repeat 4 and 5 .

5. Description of Each Modes

5-1. Dealer mode

To enter this mode, hold down the GROUIP UP key, turn the transceiver on, and keep the GROUP UP key down for two more seconds The mode can be inhibited by programming.

- SYSTEM key

Used to select one of programmed frequencies 1 to 16. If no frequency data has been preset, the frequency listed in Table 1 is written as the default value.

SYSTEM	Frequency	
	800 MHz	900 MHz
1	851.0500	935.0000
2	851.5500	935.0250
3	860.0000	938.0000
4	860.5000	938.0250
5	865.9875	939.9875
6	869.4000	940.4000
7	869.9000	940.9000
8	855.4000	936.2500
9	865.6000	939.3000
10	856.4000	936.7500
11	-	-
2	\vdots	\vdots
16	-	\vdots

Table 1

Fig. 5

OPERATING FEATURES

- GROUP key

Used to select the signaling encode/decode data or squelch adjustment.

GROUP	TONE
1	None (No decode; squelch can be adjusted.)
2	100 Hz square wave (No decode; squelch can be adjusted)
3	LTR format * (Decode; squelch cannot be adjusted.)
4	$\mathrm{QT}(67.0 \mathrm{~Hz})$ (Decode; Squelch cannot be adjusted.)
5	$\mathrm{QT}(151.4 \mathrm{~Hz})$ (Decode; squelch cannot be adjusted.)
6	$\mathrm{QT}(210.7 \mathrm{~Hz})$ (Decode; squelch cannot be adjusted.)
7	DQT (023N) (No decode; squelch cannol be adjusted.)
8	DQT (754N) (No decode; squelch cannot be adjusted.)

* Area: 0, Goto: 12, Home . 12, ID : 47, Free : 25

Table 2

- AUX key

When the AUX key is pressed, talk-around is enabled (the "TA" indicator appears), and transmission is possible on the receive frequency. When the key is pressed again, talk-around is disabled.

- SCAN key

When this key is pressed, the squelch is turned off. If a carrier is not present, white noise is heard. The "BUSY" indicator appears.

- Transmission

The microphone PTT key is used to start transmission. When the frequency and signaling have been selected with the SYSTEM and GROUP keys, transmission begins and the "TX" indicator appears. The time-out-timer does not work.

5-2. Panel Tuning Mode

This mode can be inhibited by programming. The following can be adjusted with the front keys:

Squelch level
QT fine deviation
DOT fine deviation
LTR ID fine deviation
RF power
DOT balance

- Maximum deviation
- Frequency (TX)

The mode is entered when the GROUP DOWN key is held down, the power turned on, and the key kept down for two more seconds. The display changes from "TUNING" to " 800 MHz " (TK-940) or " 900 MHz " (TK941), and then back to the system/group number indication.

Select the frequency to be adjusted by pressing the SYSTEM key when the system/group number is being displayed, then press the SCAN key. Adjustment mode is entered and the adjustment level can be varied between 1 to 256 .

- SYSTEM key

Used to select the frequency or items to be adjusted

- GROUP key

Used to select signaling encode/decode data or the adjustment level.

- AUX key

Used to determine the adjustment level. Select the level with the GROUP key and then press the AUX key. The adjustment level is written into the internal serial EEPROM.

- SCAN key

Used to switch between adjustment frequency variable mode and adjustment level (item) mode.

- Volume key

Used to vary the volume or adjust the AF power level.

TK-940/941

INSTALLATION

1. Installing the Signaling Unit
 (KDD-4 DTMF : Option)

1-1. KDD-4 assembly

1. Solder the 9-pin leads with connector to the KDD-4 board locations designated with the unit specification numbers. (Fig. 1)

Fig. 1
2. Put an insulating tube around the KDD-4 board and heat it so that the tube encases the board. (Fig. 2)

Fig. 2

1-2. Installing the KDD-4 in the transceiver

1. Remove the two halves of the case transceiver and the control panel. (Fig. 3)

Fig. 3
2. Install the KDD-4 on the TX-RX unit (B/2). (Fig. 4)

1) Attach the pad to the KDD-4 (1).
2) Plug the KDD-4 connector into CN203 of the TX$R X$ unit $(B / 2)$ (2).
3) Attach the KDD-4 to the $T X-R X$ unit (3).
4) Reinstall the panel and the two halves of the cases.

Fig. 4

TK-940/941

INSTALLATION

1-3. Setting the KDD-4 code (DTMF)

This product is built using surface mount construction techniques. The solder jumpers used to configure this product should be changed using equipment and techniques suitable for surface mount device repair. Abuse due to the use of inappropriate tools and techniques will VOID the warranty.

Fig. 5

2. Accessory Connection Cable

(KCT-19 : Option)

The KCT-19 is an accessory connection cable for connecting external equipment. The connector has 15 pins and the necessary signal lines are selected for use.

2-1. Installing the KCT-19 in the transceiver

1. Remove the upper and lower halves of the transceiver case, and lift the DC cord bushing (1) from the chassis
2. Remove the pad (2).

MON/RESET >		ON-HOOK	OFF-HOOK
JU2	Shorted	Open circuit	-I) supply

JU3	JU 4	MUTE	UNMUTE
Shorted	B	Oper, circuit	Sinks to (-) supply
Open	A	Sources (+) supply	Open circuit
Shorted	A	Open circuit	Sources (+) supply
Open	C	HCMOS HI (5Vac)	HCMOS LO (0Vdc)
Shorted	C	HCMOS LO (OVdc)	HCMOS HI (5 Vdc)

JU1	Shorted	DTMF input $10 \sim 280 \mathrm{mV}$ ms.
JU7	Open	All call disabled
	Shorted	All cail enabled
JU8 \& JU10	Shorted	[5] (ORG/BLK) is deadbeat disable
JU9	Shorted	J1 pin 2 secondary programming
	Open	J1 pin 2 secondary set input

Table 1 Jumper setup charts

Fig. 6

TK-940/941

INSTALLATION

3. Insert the KCT-19 cable
(3) into the chassis (4) The wire harness band ((5) must be inside the chassis.
4. Relocate the DC cord bushing in the chassis (6).
5. Connect the KCT-19 to the TX-RX unit (A/2) as shown in Figure 7(7).
6. Connect the KCT-19 to the external accessory by inserting the crimp terminal ((8) into the square plug (9), both of which are supplied with the KCT19

Fig.

INSTALLATION

3. Ignition Sense Cable (KCT-18: Option)

The KCT-18 is an optional cable for enabling the ignition function. The ignition function lets you turn the power to the transceiver on and off with the car ignition key.

If you use the Horn Alert function (KDD-4 required) or the Manual Relay function, you can turn the function off while driving with the ignition key

3-1. Connecting the KCT-18 to the transceiver

1. Install the KCT-19 in the transce:ver (See the KCT19 section.)
2. Insert the KCT-18 lead terminal (2) into pin 3 of the square plug ($\mathbf{(})$) supplied with the KCT-19, then insert the square plug into the KCT-19 connector (3).

Fig. 8

Fig. 9

Operation when KCT-18 is connected	$R 5$	$R 6$
	Enable	Enable
Power on/off and Horn Alert or Manual Relay on/off	Disable	Enable
Horn Alert or Manual Relay on/off	Enable	Disable
	Disable	Disable cannot be connected

Table 2 R5 and R6 setup chart
Thr to. Alert or Manual Relay function can be turned on and off only if the function has been as - to the AUX

4. External Speaker

4-1. KES-3: Option

The KES-3 is an external speaker for the $3.5-\mathrm{mm}$ diameter speaker jack.

- Connection procedure

1. Connect the KES-3 to the 3.5 -mm-diameter speaker jack on the rear of the transceiver.

4-2. KES-4 : Option

The KES-4 is an external speaker used with the accessory connection cable.

- Connection procedure

1. Install the KCT-19 in the transceiver. (See the KCT19 section.)
2. Insert the crimp terminal into the square plug supplied with the KCT-19.
3. Connect CN5 of the transceiver to connector C of the KCT-19 instead of to the internal speaker connector

Fig. 1

TK-940/941

INSTALLATION

5. Fitting the Control Panel Upside Down

The TK-940/941 control panel can be fitted upside down, so the transceiver can be mounted with its internal speaker (in the upper half of the case) facing down in your car

1. Remove the control panel and the TX-RX unit ($\mathrm{B} / 2$) control section. (Fig. 12)

Fig. 12
2. Fold the flat cable ($\mathbf{0}$) differently ($\mathbf{2}$)
3. Turn the control section ((3) through 180 degrees (4), and mount it on the transceiver ($\mathbf{5}$)
4. Insert the flat cable into control section connector CN201 (6

Fig. 13
5. Turn the pnel through 180 degrees and mount it on the transceiver. Refit the two halves of the case to complete installation (Fig. 14)

rig. 14

TK-940/941

BLOCK DIA

TK-940/941 DIAGRAM

LEVEL DIAGRAM (TK-940)

LEVEL DIAGRAM (TK-941)
TX SECTION

2

CIRCUIT DESCRIPTION

1. Overview

This transceiver is an 800 MHz -band (TK-940), 900 MHz -band (TK-941) EFJ LTR ${ }^{\text {TM }}$ trunked-systemcompatible FM transceiver that can be programmed to operate on both LTR and conventional systems.

2. Circuit Configuration by Frequency

The receiver is a double-conversion superhet with a first intermediate frequency (IF) of 45.0375 MHz (TK940), 39.0375 MHz (TK-941) and a second IF of 455 kHz . Incoming signals from the antenna are mixed with the local signal from the PLL to produce the first IF of 45.0375 MHz (TK-940), 39.0375MHz (TK-941).

This is then mixed with the 44.5825 MHz (TK-940), 38.5825 MHz (TK-941) second local oscillator output to produce the 455 Hz second IF. This is detected to give the demodulated signal.

The transmit signal frequency is generated by the PLL VCO, and modulated by the signal from the microphone. It is then amplified by TX amplifier and PA amplifier, and sent to the antenna.

Fig. 1 Frequency configuration

3. Receiving System

3-1. RF unit

An incoming RF signal from the antenna terminal passes through the antenna switch (D19, D20, and D21 are off) and then the bandpass filter (L9). The signa! is amplified by RF amplifier O24, and passes through the bandpass filter (L6) again. The resulting signal goes to the first mixer (O21), where it is mixed with the first local oscillator signal output from the frequency synthesizer to produce the first IF 45.0375 MHz (TK-940), 39.0375 MHz (TK-941).

3-2. IF unit

The first IF signal then passes through a four-pole mono ithic crystal fiter (XF1). The signal is amplified by first IF amplifier Q16 and goes to the second IF unit.

The second IF unit consists of an IF system IC (IC7) and the second mixer, second local oscillator, second IF filter, and FM detector, $1 C 7$ mixes the signal input to it with the 44.5825 MHz (TK-940), 38.5825 MHz (TK941) second local oscillator output if the crystal osciliator (X2) to produce the second IF c ${ }^{5}{ }^{15} 5 \mathrm{kHz}$

The 455 kHz signal then goes throug 55 kHz ceramic filter CF1, is amplifi by the limi amplifier, demodulated by the quac e FM de or (in the same IC), and output to tht eive audio iplifier.

CIRCUIT DESCRIPTION

3-3. Audio amplifier unit

The demodulated signal is amplified by IC2 (2/2), and goes through a low-pass filter consisting of IC5 (1/ 2), a high-pass filter consisting of IC5 (2/2), and a BEF consisting of IC9 (1/2) to remove the unwanted audio signal.

The signal the passes through the de-emphasis circuit consisting of the AF switch (O17 on) and IC9 (2) 2), and the volume level is adjusted by the IC6 D/A converter. The resulting signal goes to audio amplifier IC11, is amplified, and is output to the speaker.

3-4. Squelch circuit

The detector output is amplified by IC2 (2/2) and passes through a high-pass filter consisting of IC204 (2/2), which removes the noise components from the signal. Q202 converts the noise pulse level by hysteresis and applies it to the CPU (IC209)

The CPU counts the pulses, integrates them, and turns the squelch on and off according to the calculated value.

Fig. 2 Receiving system

TK-940/941

CIRCUIT DESCRIPTION

4. Transmitter System

4-1. Microphone amplifier

The signal from the microphone goes to the microphone mute switch (O201 off). It then passes through the high-pass filter in IC205 (2/2) and the preemphasis/IDC circuit in IC205 (1/2). (If the option has been installed, the signal is mixed with the encode signal.)

The signal is applied to the IC212 summing amplifier and mixed with QT and DQT from the CPU (IC209). It then passes through the splatter filter (the fourth lowpass filter) consisting of IC211 (1/2, 2/2), which removes unwanted harmonics.

The output from the low-pass filter is input to the D/ A converter (IC6) to adjust the modulation.

Fig. 3 Microphone amplification

4-2. Final amplifier

The signal from the PLL is amplified by two power modules (IC12 and IC14) to an output level of 15 W , and goes through the harmonic filter and antenna switch D20, and on to the antenna terminal.

IC13 (1/2) compares the DC input to pin 2 with the reference voltage at pin 3 applied by IC8 (1/2), amplifies the result, and controls the DC amplifier (O22 and Q23) to keep the transmit final current constant, thus keeping the transmit output constant.

4-3. APC circuit

The direct current that flows through the final module (C 14) produces a voltage across resistors R108, R109, and R110. This voltage is applied to pin 6 of IC13 (2/2), and is input as the reference voltage difference of pin 5 and amplified.

Fig. 4 Transmit power circuit and APC circuit

TK-940/941

CIRCUIT DESCRIPTION

5. Frequency Synthesizer Unit

5-1. PLL

The frequency synthesizer consists of a $\mathrm{VCXO}(\mathrm{X} 1)$. and a VCO circuit, PLL circuit, and peripheral circuits.

The VCXO generates 12.8 MHz . The frequency stability is within $\pm 2.5 \mathrm{ppm}$ (TK-940), $\pm 1.5 \mathrm{ppm}$ (TK-941) within the temperature range of -30 to $+60^{\circ} \mathrm{C}$. This output enters the PLL IC (IC1), and is divided by 1024 to produce a 12.5 kHz reference signal.

The VCO output from the buffer amplifier (Q52) is doubled by Q53, amplified by buffer amplifier O3, and
sent to the PLL IC (IC1). The phase of this signal is compared with the 12.5 kHz reference signal in IC 1 The output from the phase comparator goes through the charge pump (in IC1) and low-pass filter, and on to the varactor diodes (D51 and D52) in the VCO unit, keeping the VCO frequency constant. The other output from Q53 is amplified by the RF amplifier (Q18), and output to the transmit or receive unit via the RF switch (D17)

Fig. 5 PLL unit block diagram

5-2. PLL unlock

When the PLL is unlocked, the lock detect signal (LD) of the PLL IC (IC1) is rectified by D1 and Q2, and converted to a DC signal This signal cuts off the power to the RF switch (D17) and drive module (IC 12), stopping unnecessary transmission

Fig. 6 PLL unlock circuit

CIRCUIT DESCRIPTION

6. Control unit

The control unit consists of CPU IIC209) and its peripheral circuits. It controls the TX and RX units and transfers data to and from the LCD assembly. The CPU has the following main functions:

1) Switching between transmission and reception according to the PTT signal input.
2) Reading system, group, frequency, and program data from the memory circuit.
3) Sending frequency data to the PLL
4) Turning the squelch on and off according to the pulse signal input from the squeich circuit.
5) Controlling the audio mute circuit according to input decode data.
6) Sending encode data
7) Sending data to the D/A converter.

6-1. Memory circuit

IC201 is a 2-Kbit EEPROM that stores adjustment and backup data. IC207 is a 256 -Kbit flash memory that contains the transceiver control program, and channel and operating feature data. The program and data can be easily written into the memory from external equipment. IC208 and IC210 control the writing of data into IC207.

- Shift register

IC10 is an interface IC for I/O port expansion. It is used to expand the CPU (IC209) output ports.

- D/A converter

IC6 is used as a conventional semi-fixed-resistor converter It sets the following:

1) Reference oscillator frequency
2) Transmission power
3) Modulation level
4) Audio power

6-2. TX encode data

The CPU (IC209) transmits encode data.

- OT, DOT, LTR

These data items are output from CPU pin 33. The signal from this pin passes through the CR low-pass filter and goes to the summing amplifier (IC212) in the microphone amplifier. It is mixed with the audio signal and output to the splatter filter. It then goes to the D/A converter (IC6) and on to the VCXO and VCO.

6-3. RX decode data

- Low-speed data (OT, DQT, LTR)

The receive detection signal is amplified by IC2 (2) 2). and passes through a low-pass filter IC204 (1/2) to remove audio components. This signal is input to pin 27 of the CPU.

The CPU digitizes this signal, performs processing such as DC restoration, and decodes the signal.

Fig. 7 Control unit block diagram

CIRCUIT DESCRIPTION

6-4. PLL data output

PLL data is output from DATA (pin 61), ENABLE (pin 59), and CLOCK (pin 60) of the CPU (IC209). The signals are input to the PLL IC (IC1) when the channel is changed or when transmission is changed to reception and vice versa.

6-5. Horn control

The horn switch, consisting of Q13, Q14, and Q29, controls the horn relay. It is supplied by the dealer to provide the external horn alert function.

Q29 disables horn alert, turning on when its base is high, to inhibit the function. Normally, the output from IC10 is low, and Q13 is off; the base of Q14 is about OV and Q14 is off. When horn alert is enabled, the output from IC10 goes high and Q13 turns on. The base current flows through R61 to Q14 to turn Q14 on. Q14 can sink a minimum of 800 mA .

6-6. Power supply circuit

D8 protects C 1 against overvoltage. Each time a pulse comes from the PSW terminal, the IC1 output is reversed. The reversed output signal passes through Q1 and Q3 and drives Q4. A voltage must be applied to the IGN terminal.

If 24 V is supplied to the transceiver by mistake, O 2 turns on, and Q3 and Q4 are forced off, so the transceiver does not turn on.

Fig. 8 Horn control circuit

If the SB terminal of the modular jack to which the microphone is connected is shorted or an overcurrent flows, R122 and R123 convert the current to a voltage and Q30 turns on. Its output drives Q28 and turns Q27 on, and the IC1 output foes high. This turns the transceiver off. If the terminal is no longer shorted, the transceiver can be turned on by pressing the power key. R125 and C161 are used to prevent malfunctioning when a device with a large surge current is connected.

Fig. 9 Power supply circuit

CIRCUIT DESCRIPTION

7. LCD Assembly

The LCD assembly consists of CPU, LCD, power switch circuit, and tone generator.

7-1. CPU

The CPU (IC2) carries out the following main operations:

It sends on/off data serially to the control unit from the AF volume control, UP/DOWN key, system UP/ DOWN key, group UP/DOWN key, SCAN key, and AUX key. It receives serial data from the control unit and displays it on the LCD.

The LCD can indicate alphanumeric characters (13 segments, 8 digits), TX, BUSY, CALL, SCAN, Talkaround, Option, AUX, TEL, and Delete.

7-2. Power switch circuit

Each time the power key is pressed, a pulse is sent to the TX-RX unit to turn the transceiver on or off.

7-3. Tone generator

The beeps and alert tones are generated by combining square wave signals of about 700 Hz , 900 Hz , and 1500 Hz generated by the CPU These signals are output from pins 46,47 , and 48 of the CPU (IC2). The signals are rectified by a CR network and fed to the TX-RX unit LCD assembly and the de-emphasis circuit of IC9 (2/2).

Fig. 10 Tone generator circuit

TK-940/941
SEMICONDUCTOR DATA

Level Adjuster : M62363FP (TX-RX Unit IC6)

- Block diagram

Audio Power Amplifier : LA4422 (TX-RX Unit IC11)

- Terminal connection diagram


```
- Block diagram
```


TK-940/941

SEMICONDUCTOR DATA

EEPROM : AT24C02N10SI2.7 (TX-RX Unit IC201)

- Terminal connection diagram

- Terminal function

Pin name	Function
AO~A2	Address input
SDA	Serial data
SCL	Serial clock
TEST	Test input \rightarrow Ground (GND)
NC	No connect

- Block diagram

SEMICONDUCTOR DATA

Microprocessor : 78312AGF3563BE (TX-RX Unit IC209)

- Terminal connection diagram

- Terminal function

Pin No.	Pin Name	1/0	Function	Pin No.	Pin Name	1/0	Function
1	P06	1	Option signaling transpond PTT.	26°	VSS	-	GND.
2	P07	0	D-A converter enable.	27	ANO	1	Low speed data input.
3	P10	1	External PTT.	28	AN1	1	Not use.
4	P11	1	External HOOK.	29	AN2	1	$800 / 900 \mathrm{MHz}$ band input.
5	P12	0	Option signaling reset.	30	AN3	I	+5 V .
6	P13	1	Not use.	31	AVREF	-	+5V.
7	P14	0	Data output with clone.	32	AVSS	-	GND.
8	P15	1/0	PTT/data output with programming.	33	P34/PWM0	0	Low speed data (Signaling) output.
9	P16	1	Data group control input (MDT).	34	P35/PWM1	1	Not use.
10	P17	0	KEY (Transmit : Active "H").	35	P36/CLRO/TOO	0	EEPROM data output.
11	P20/NMI	I	GND.	36	P37/CLR1/TO1	0	Flash memory write protect.
12	P21/INTE0	1	For display serial (RX) data input.	37~44	P50/A8~P57/A15	-	A8~A15 (Bus).
13	P22/INTE1	i	HOOK/data input with programming.	45	EA	-	External access.
14	P23/INTE2	1	Data input with clone.	46	RESET	-	Power on reset.
15	P24/TXD	0	External (TX) data output.	47	/RD	-	Read (Bus).
16	P25/RXD	1	External (RX) data output.	48	MR	-	Write (Bus).
17	P26/SCK	0	Microphone mute (When receive/ink).	49	/ALE	-	Address latch.
18	P27/CTS	1	GND.	50~57	P40/ADO P P47/AD7	-	ADO~AD7 (Bus).
19	RFSH	0	Not use.	58	VOD	-	+5V.
20	P30/C10	1	Noise pulse input.	59	POO	0	PLL data enable.
21	P31/CTRLO	1	Not use.	60	P01	0	PLL/EEPROM/Shitt register/D-A converter clock.
22	P32till	1	Unlock signal input.	61	P02	0	PLL/shift register/D-A converter data.
23	P33/CTRL1	1	Option signaling decode latch.	62	P03	0	Shift register f"able.
24	$\times 1$	-	12.000 MHz .	63	P04	0	For display serial (TX) data output.
25	X2	-	12.000 MHz .	64	P05	1	Option signaling deadbeat disable.

TK-940/941

SEMICONDUCTOR DATA

Microprocessor : 75308BGK740BE9 (LCD Assy IC2)

- Terminal connection diagram

- Terminal function

Pin No.	Pin Name	I/O	Function	Pin No.	Pin Name	I/O	Function
1~20	S12~S31	0	LCD output (S20~S1).	52	P32	-	Open (not use).
21~24	COM0~COM3	0	LCD COM0~COM3 output.	53	P33	0	Serial data output.
25	BIAS	0	LCD power supply voltage.	54	VDD	-	+5 V .
26~28	VLCO~VLCZ	-	LCD voltage level generator.	55	XT1	-	+5V.
29~32	P40-P43	-	Open (not use).	56	XT2	-	Open (not use).
33	Vss	-	GND.	57	NC	-	Open (not use).
34-37	P50~P53	-	Open (not use).	58.59	X1, X2	-	System clock input.
38	P00	1	HOOK (PC) serial data input.	60	P60	1	AUX switch input.
39~41	P01~P03	-	Open inot use).	61	P61	1	SCAN switch input.
42	P10	1	Serial data input.	62	P62	1	Volume up switch input.
43	P11	1	PTT (PC) serial data input.	63	P6.3	1	Volume down switch input.
45, 45	P12، P13	-	Open (not use).	64	P70	I	Group up switch input.
46	P20	0	Beep output (Hi).	65	P71	1	Group down switch input.
47	P21	0	Beep output (Med).	66	P72	1	System up switch input.
48	P22	0	Beep output (Lo).	67	P73	1	System down swi "h input.
49	P23	-	Open (not use).	68	$\overline{\bar{R} E S E T}$	1	System reset input.
50	P30	0	PTT (PC) serial data output.	69~80	S0- \% 11	0	LCD output (S32~S21).
51	P31	0	HOOK (PC) serial data output.				

SEMICONDUCTOR DATA

PLL System : SC370651F or MC145190F-K (PLL/VCO IC1)

- Terminal connection diagram

- Block diagram

TK-940/941

DESCRIPTION OF COMPONENTS

TX-RX UNIT (X57-4590-XX) -10:TK-940 -11 : TK-941

Ref. No.	Parts No.	Use/Function	Operation/Condition
IC1	BU4013BF	Power supply circuit logic control	
IC2	NJM4558E	Audio amplifier (Detected output)	
1 C 3	NJM78L05UA	Voitage regualtor	5 V .
IC4	$\mu \mathrm{PC} 7808 \mathrm{H}$	Voltage regulator	8 V .
IC5	NJM4558E	Active filter	
1 C 6	M62363FP	Level adjuster	
1 C 7	MC3372V	IF system	1st IF 45.0375 MHz (TK-940), 390375 MHz (TK-941), 2nd IF. 455 kHz
$1 \mathrm{C8}$	NJM4558E	Buffer amplifier	
1 C 9	NJM4558E	Active filter	
IC10	XRU4094BCF	I/O port expansion	Or BU4094BCF.
IC11	LA4422	Audio power amplifier	
IC13	NJM2904M	Comparator, DC amplifier	
IC201	AT24C02N10S12.7	EEPROM	Capacity 2-kbit.
IC202	NJM78L05UA	Voltage regulator	5 V .
IC203	HD74HC373FP	Latch	
IC204	NJM4558E	Active filter, Hysteresis comparator	
IC205	NJM4558E	Active filter, Limiter	
IC206	S-8054ALB-LM-T1	Precision reference	
IC207	AT29C256-20Ti	Flash memory	
IC208	TC7S32F	DC switch	"L" when IC207 access.
IC209	78312AGF3563BE	Microprocessor	
IC210	TC7S04F	DC switch	"L" when writing program or data from external equipment.
IC211	NJM4558E	Active filter	
IC212	TA75S01F	Adder	
Q1	DTA114EU	DC switch	On when power switch on.
Q2	DTC114EU	DC switch	On when 24 V connected, then Q 3 turn off.
Q3	DTC114EU	DC switch	On when power switch on.
Q4	2SA1641(S,T)	DC switch	On when power switch on.
Q5	DTA114YU	DC switch	On when power switch off, then D22 turn on.
Q6, 7	2SB1188(Q, R)	DC switch	RX. OV, TX: 8V
Q8	2SA1362(Y)	DC switch	RX: 8V, TX:OV
Q9	DTC114EU	DC switch	On when PLL lock.
Q10	DTC114EU	DC switch	On when PTT switch on.
Q11	DTC114EU	DC switch	On when RX.
012	DTC114EU	DC switch	On when TX.
013	DTC114EU	DC switch	On when horn control on.
Q14	2SD1624(S)	DC switch	On when horn control on.
Q15	2SC4116(GR)	Ripple filter	
Q16	2SC4215(Y)	RX 1st IF amplifier	45.0375 MHz (TK-940), 39.0375 MHz (TK-941)
017	DTA114TU	Muting switch	On when no beep sound at busy.
Q18	2SC4226(R24)	RF amplifier	
Q19	DTC144EU	DC switch	On when no beep sound at busy.
020	DTC314TK	Muting switch	Off when busy.
Q21	3SK241(R)	RX 1st mixer	
Q22	2SB1370(E,F)	APC driver	
Q23	2SC4116(GR)	DC amplitier	APC controller.
Q24	2SC4094(R37)	RF amplifier	
025	DTA144EU	DC switch	On when PTT switch on.
026	DTC144EU	DC switch	On when PTT switch on.
Q27	DTA114YU	DC switch	On when modular jack SB terminal shorted.
028	DTC114YU	DC switch	On when modular jack SB terminal shorted.
029	DTC114EU	DC switch	On when IGN line "H".
Q30	2SA1586(Y,GR)	DC switch	On when modular jack SB terminal shorted.

TK-940/941

DESCRIPTION OF COMPONENTS

Ref. No.	Parts No.	Use/Function	Operation/Condition
Q201	DTC114EU	Muting switch	Off when TX.
Q202	DTC144EU	DC swich	On/off by noise.
D1	02CZ18(X, Y)	Voltage reference	
D2	DSA3A1	Protection	On when reverse connection.
D4	1S\$301	Reverse current prevention	
D7	DA204K	Surge absorption	On when 5 V or more and V or less.
D8	02CZ15(X,Y)	Voltage reference	
D9, 10	DA204K	Surge absorption	On when 5 V or more and 0 V or less.
D11	1SS301	Reverse current prevention	
D12~15	DA204K	Surge absorption	On when 5 V or more and OV or less.
D16	02CZ20(Y, Z)	Voltage reference	
D17	DAN235K	RF switch	
D18	HSM88AS	Large input protection	
D19	M1809	TX/RX switch	On when TX.
D20	MA4P1250	TX/RX switch	On when TX.
D21	M1809	TX/RX switch	On when TX.
D22	MA77	DC switch	On when power switch off.
D201, 202	DA204K	Surge absorption	On when 5 V or more and OV or less.
D203	1SS301	DC switch	On when microphone mute on.

PLL/VCO (X58-4170-XX) -10:TK-940 -11:TK-941

Ref. No.	Parts No.	Use/Function	Operation/Condition
IC1	SC370651F	PLL system	Or MC145190F-K.
Q1	DTC143EK	Lock detection switch	On when PLL unlocked.
Q2	2SA1586(Y,GR)	Lock detection switch	On when PLL unlocked.
Q3	2 SC3356	Buffer amplifier	
Q51	2SK508NV(K52)	Oscillator	
Q52	2 SC3356	Buffer amplifier	
Q53	2SC3356	Doubler	
D1	1SS301	DC switch	On when PLL unlocked.
D51, 52	1T363A	Variable diode	Frequency control.
D53	MA360	Modulator	

LCD ASSY (B38-0731-05)

Ref. No.	Parts No.	Use/Function	Operation/Condition
IC1	NJM78L05UA	Voltage regulator	5 V.
IC2	$75308 B 6 K 740 B E 9$	Microprocessor	
ED1	B38-0722-05	LCD	

PARTS LIST

CAPACITORS
 $$
\frac{C}{C C} \quad \frac{45}{2} \quad \frac{\text { TH }}{3} \quad \frac{1 H}{4} \quad \frac{220}{5} \quad \frac{\mathrm{~J}}{6}
$$

$1=$ Type \ldots ceramic, electrolynic, etc. $2=$ Shape \ldots round, square, ect .
$4=$ Voltage rating
5 = Value
$3=$ Temp. coefficient
$6=$ Tolerance

- Capacitor value
$010=1 \mathrm{pF}$
$100=10 \mathrm{pF}$
$101=100 \mathrm{pF}$
$102=1000 \mathrm{pF}=0.001 \mu \mathrm{~F}$
$103=0.01 \mu \mathrm{~F}$

- Temperature coefficient

1st Word	C	L	P	R	S	T	U
Color *	Black	Red	Orange	Yellow	Green	Blue	Violet
$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0	-80	-150	-220	-330	-470	-750

2nd Word	G	H	J	K	L
ppm $/{ }^{\circ} \mathrm{C}$	± 30	± 60	± 120	± 250	± 500

Example: $\mathrm{CC} 45 \mathrm{TH}=-470 \pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

- Tolerance

Code	C	D	G	J	K	M	X	Z	P	No code
$(\%)$	± 0.25	± 0.5	± 2	± 5	± 10	± 20	+40	+80	+100	More than $10 \mu \mathrm{~F}-10 \sim+50$
						-20	-20	-0	Less than $4.7 \mu \mathrm{~F}-10 \sim+75$	

Less than 10 pF

Code	B	C	D	F	G
(pF)	± 0.1	± 0.25	± 0.5	± 1	± 2

- Voltage rating

1st word	2nd word	A	B	C	D	E	F	G	H	J	K
0	1.0	1.25	1.6	2.0	2.5	3.15	4.0	5.0	6.3	8.0	-
1	10	12.5	16	20	25	31.5	40	50	63	80	35
2	100	125	160	200	250	315	400	500	630	800	-
3	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	-

- Chip capacitors (Refer to the table above except dimension)

$$
\text { (EX) } \frac{C C}{1} \frac{73}{2} \quad \frac{E}{3} \frac{S L}{4} \frac{1 H}{5} \quad \frac{000}{6} \quad \frac{J}{7}
$$

(Chip) (CH, RH, UJ, SL)
(EX) CK $\underline{73}$ E $E \quad 1 H \quad 000 \quad \underline{Z}$
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
(Chip) (B, F)

RESISTORS

- Chip resistor (Carbon)

$$
\begin{array}{lllllllll}
\text { (EX) } \quad \frac{R D}{1} & \frac{73}{2} & \underline{E} & \underline{B} & \frac{2 B}{5} & \frac{000}{\mathrm{~J}} & \frac{\mathrm{~J}}{7}
\end{array}
$$

(Chip) (B,F)

- Carbon resistor (Normal type)

(EX) $\frac{R D}{1} \quad \frac{14}{2} \quad \frac{B}{3} \quad \frac{B}{4} \quad \frac{2 C}{5} \quad \frac{000}{6} \quad \frac{J}{7}$

$$
\begin{array}{ll}
1=\text { Type } \ldots \text { ceramic, electrolytic, etc. } & 5=\text { Voltage rating } \\
2=\text { Shape } \ldots \text { round, square, ect. } & 6=\text { Value } \\
3=\text { Dimension } & 7=\text { Tolerance }
\end{array}
$$

Dimension

- Dimension (Chip capacitor)

Dimension code	L	W	T
Empty	5.6 ± 0.5	5.0 ± 0.5	Less than 2.0
E	3.2 ± 0.2	1.6 ± 0.2	Less than 1.25
F	2.0 ± 0.3	1.25 ± 0.2	Less than 1.25

- Dimension (Chip resistor)

Dimension code	L	W	T	Wattage
E	3.2 ± 0.2	1.6 ± 0.2	0.57	$2 B$
F	2.0 ± 0.3	1.25 ± 0.2	0.45	2 A

Rating wattage

Code	Wattage	Code	Wattage	Code	Wattage
2 A	$1 / 10 \mathrm{~W}$	2 E	$1 / 4 \mathrm{~W}$	3 A	1 W
2 B	$1 / 8 \mathrm{~W}$	2 H	$1 / 2 \mathrm{~W}$	3 D	2 W
2 C	$1 / 6 \mathrm{~W}$				

TK－940／941

Ref．No．参 照 番 号	Address 位 置	$\left\|\begin{array}{c} \text { New } \\ \text { Parts } \\ \text { 㮍 } \end{array}\right\|$	Parts No． 部 品 番 号	Description 部 品 名／規 格	Desti－ nation 仕 向	Re－ marks 備考
TK－940／941						
1	18		A01－1065－03	METALLIC CABINET（UPPER）		
2	2 B		A01－1066－03	METALLIC CABINET（LOWER）		
3	1 C	＊	A10－1344－01	CHASSIS		
4	2A	＊	A62－0349－03	PANEL ASSY		
5	$2 E$	＊	809－0235－05	CAP ：ACSY		
6	2 A	＊	B38－0731－05	LCD ASSY		
7	18，1C		B42－2455－04	LABEL（M4×8 MAX）		
8	10		B42－3343－04	LABEL（S／NQ）		
9	1 C		B42－3394－14	LABEL		
10	3 E		B42－5526－04	LAEEL（HYATT）		
11	1 1E		B46－0409－40	WARRANTY CARD		
12	1 E	＊	B62－0454－00	INSTRUCTIUN MANUAL		
13	1 C	＊	B72－0705－04	mudel name plate	940	
13	10	＊	B72－0752－04	MQDEL NAME Plate	941	
14	1 D		E30－2036－05	GRQUND LEAD WIRE ：ACSY		
15	2 E		E30－2076－15	DC CORD ：ACSY		
16	1 E		E30－2089－08	CURL CORD（FQR MIC）：ACSY		
W3	10		E30－2172－15	COC CORU ASSY		
W＇	10		E30－3031－15	ANT CABLE ASSY		
W301	2 B	＊	E37－0460－05	FLAT CABLE（UISPLY－CQNT UNIT）		
W2	1 C	＊	E37－0461－05	LEAD WIRE WITH CQNNECTOR（SP：2P）		
W20 1	2 B	＊	E37－0470－05	FLAT CABLE（CONT－TXRX UNIT）		
700	1 B	＊	F10－2125－04	SHIELDING PLATE（PLL）		
701	2 B	＊	F10－2126－03	SHIELDING CQVER（PLL）		
22	2 E		F51－0016－05	FUSE（10A）：ACSY		
－	2 E		F51－0016－05	FUSE（10A）．． 2 pos（DC CORO）		
24	1 B		602－0576－14	FLAT SPRING（AF IC）		
25	18		602－0711－04	FLAT SPRING（APC／AVR）		
26	1B，2C	＊	G10－0764－04	FIBRQUS SHEET（CHASSIS）		
27	2 B	＊	G10－0765－04	FIBRQUS SHEET（CHASSIS）		
28	28	＊	G11－0728－04	SHEET（MQUULAR JACK）		
29	1 C	＊	G13－1468－04	CUSHION（DC CORD）		
702	2 B		G13－0921－04	CUSHION（LCD ASSY）		
30	2 B	＊	653－0776－04	FACKING（PHQNE JACK）		
31	20	＊	H10－2784－02	PQLYSTYRENE FQAMED FIXTURE		
32	3 E	＊	H10－2785－02	PQLYSTYRENE FQAMED FIXTURE		
33	2 D	＊	H12－1469－02	PACKING FIXTURE		
34	10	＊	H13－0942－04	CARTON EQARD		
35	2 E		H25－0029－04	BAG（ 60×110 ）		
36	3 E		H25－0049－03	EAG		
37	2 E		H25－0103－04	EAG（ 125×250 ）		
38	20	＊	H25－0796－04	BAG		
39	30	＊	H52－0603－04	ITEM CARTON CASE	940	
39	30	＊	H52－0610－04	ITEM CARTON CASE	941	
40	2 E		J19－1376－15	MIC HANGER ：ACSY		
41	10		J19－1434－04	HQLDER（SP）		
42	10		J29－0441－03	BRACKET ：ACSY		
43	2 A	＊	K29－4928－02	KEY TQP		
A	2 B		N09－2077－05	SEMS SCREW（FINAL MQDULE）		
B	1C，2C		N33－2606－45	QVAL head machin screw（case）		
C	1B，1C		N83－2606－46	PAN HEAD TAPTITE SCREW		

L：Scandinavia
Y：PX（Far East，Hawaii）
Y：AAFES（Europe）

K：USA	P：Canada
T：England	E：Europe
X：Australia	M：Other A

TK-940/941

PARTS LIST

* New Parts

TK-940/941
Parts without. Parts No are not supplied.
Les articles nonmentionnes dans le Parts No. ne sont, pas fournis
TX-RX UNIT (X57-4590-XX)

K:USA
T:England
X:Australia

P:Canada
E:Europe
M:Other Areas

PARTS LIST
＊Now Parts

TX－RX UNIT（X57－4590－XX）
Telle onne Parts No．werden rucht geliefert

$$
-7
$$

Ref．No．参 照 番 号	Address 位 置	$\begin{gathered} \text { New } \\ \text { Parts } \\ \text { 新 } \end{gathered}$	Parts No． 部 品 番 号		Description品 名／規	格	$\left\|\begin{array}{c} \text { Desti- } \\ \text { nation } \\ \text { 仕 向 } \end{array}\right\|$	Re－ marks備考
2			CK73GB1H103K	CHIF	0.010 OF	K		
063			CK73GE1H102K	CHIP C	$1000 P F$	K		
C64			CK736B1H！03K	CHIP	0.01 UF	K		
C65			CC73GCHIHIO1J	CHIP C	100pF	J		
C66			CK73GB1H102K	CHIP C	1000 PF	K		
C67			C92－0546－05	CHIP TAN	68UF	6．3WV		
C68， 69			CK73GE1H103K	CHIP C	0.01 UF	K		
C70			CK73GB1H102K	CHIP C	1000 FF	K		
C71		＊	C92－0044－05	ELECTRO	47 JF	10 WV		
C72			CC736CH1H101J	CHIP C	100 PF	J		
C73			CK73GB1H102K	CHIP C	1000 PF	K		
C 74		＊	C92－0044－05	ELECTRQ	47 JF	10 WV		
C75			C92－0004－05	CHIP TAN	1．0UF	16 WV		
C76， 77			CK73GB1H103K	CHIP C	0.01 UF	K		
C78			CK73FBIEJO4K	CHIP C	0.10 UF	K		
C79			C92－0507－05	CHIP TAN	4．7JF	6.3 WV		
C80			CK73GB1C104K	CHIP C	0．10UF	K		
C81			C92－0040－05	ELECTRO	47 UF	16WV		
C82			CK73GB1H1U3K	CHIP C	O． 0.1 UF	K		
C83			CO73GCH1H030C	CHIP C	3 PF	C		
C84， 85			CK73GB1H102K	CHIP C	1000 PF	K		
C86			CC73GCH1H101J	CHIP C	100 PF	J		
C87			CC73GCH1H470J	CHIP C	47 PF	J		
C88			CO73GCH1H0800	CHIP C	8 PF	D	940	
C88			CO73GCH1H110J	CHIP C	11 PF	J	941	
C89			CC73GCH1 470 J	CHIP C	$4 \% \mathrm{FF}$	J		
c90			CC73GCH1H030C	CHIP C	3PF	C		
C91			CK73GB1H471K	CHIP C	470 PF	K		
C92			CK73GB1H102K	CHIP C	1000 PF	K		
C43			CK73FF10105Z	CHIP C	1．ULF	Z		
C94			CC73GCH1H101J	CHIP C	100 PF	J		
C95			CK73GB1H471K	CHIP C	470 PF	K		
C96			CK73GB1H102K	CHIP C	1000 PF	K		
C97		＊	C92－0044－05	ELECTRA	$47 \mathrm{UF}$	$10 \mathrm{WV}$		
C98			CC73GCH1H101J	CHIP C	100PF	J		
C99		＊	C92－0044－05	ELECTRQ	$47 U F$	$10 \mathrm{WV}$		
C101 C102			CC73GCH1H101J CK73GB1H103K	CHIP C CHIP C	$\begin{aligned} & 100 \mathrm{PF} \\ & 0.01 \mathrm{UF} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \end{aligned}$		
C103			CC73GCH1H270J	CHIP C	27 PF	J	940	
C103			CC73GCH1 3330 J	CHIP C	33 PF	J	941	
C104			CC73GCH1H470．J	CHIP C	47 PF	J		
C105			CK73GE1H471K	CHIF C	470 PF	K		
C107			CC73GCH1H101J	CHIP C	100 FF	J		
C108			C92－0040－05	ELECTRQ	47 UF	16 WV		
6109			CK73GB1H102K	CHIP C	1000 PF	K		
C110			CEO4EW1A471M	ELECTRU	$470 \mathrm{UF}$	$10 \mathrm{WV}$		
C111			CQ92M1H1U4K	MYLAR C	$0.10 \cup F$	K		
C 112			CO73GCH1HR75C	CHIP C	0.75 FF	C		
$\mathrm{C} 113,114$			CK73GE1H102K	CHIP C	1000 PF	K		
C115			CC73GCH1HR750	CHIP C	0.75 PF	C	940	
C115			CC73GCH1H010C	CHIP C	1 PF	C	941	
C116			CC73GCHIH470J	CHIP C	47 PF	J		
C117			CK73GB1H102K	CHIP C	1000 PF	K		
C118			C92－0004－05	CHIP TAN	1．DUF	16 WV		
C119			CK73G日1H102K	CHIP C	1000 PF	K		

Parts without Parts No. are not supplied
L.es articles non mentionnes dans le Parts No. ne sont pas fournis

Telle ohne Parts No. werden nont geliefert.

* New Parts

TX-RX UNIT (X57-4590-XX)

Parts witholit Parts No．are not supplied
Les ar uofes non mentionnes dans le Parts No．ne sont Das fournis．
leife onne Parts No．werden mont geliefert．
TX－RX UNIT（X57－4590－XX）

Ref．No．参 照 番 号	Address位 置	$\left\lvert\, \begin{gathered} \text { New } \\ \text { Parts } \\ \text { 新 } \end{gathered}\right.$	Parts No． 部 品 番 号	Description 部 品 名／規 格	$\begin{gathered} \text { Desti- } \\ \text { nation } \\ \text { 仕 向 } \end{gathered}$	Re－ marks備考
L9		＊	L40－107：－36	SMALL FIXED［NDUCTOF（ 1 ONH）		
L8		＊L	L40－6861－36	SMALL FIXED 1NDUCTUR（6．8NH）		
L9		＊	L79－1152－05	FILTER（860MHZ）	940	
L9		＊	L79－1153－05	FILTER（ 938 MHZ ）	941	
L10			L34－1306－15	COIL（5．5T）		
LII			L34－1307－05	CNIL（2T）	940	
L1．			L34－1313－05	CQIL（2T）	941	
L12			L34－1306－15	CNIL（5．5T）		
L13			L．34－1307－05	COIL（2T）	940	
L13			L34－1313－05	CQIL（2T）	941	
L14			L34－1317－05	CQIL（3．5T）		
L 15		＊	L40－2291－37	SMALL FIXED INDUCTUR（2．2UH）		
L5．		＊	L33－1264－05	SMALL FIXED INDUCTQR（5．6NH）	941	
L51			L4U－6861－35	SMALL FIXED INDUCTQR（6．8NH）	940	
L52		＊	L33－1263－05	SMALL FIXED INDUCTQR（4．7NH）	941	
L52			L40－6861－35	SMALL FIXED INDUCTUR（6．8NH）	940	
$\times 1$		＊	L77－1563－05	VCXQ（12．8MHZ）	940	
X1		＊	L77－1564－05	VCXQ（12．8MHZ）	941	
X2			L77－1431－05	CRYSTAL RESQNATQR（44．5825MHZ）	940	
X2			L77－1434－05	CRYSTAL RESUNATQR（38．5825 MHZ）	941	
X201			L78－0308－05	RESONATUR		
XF＇		＊	L71－0445－05	$\operatorname{MCF}(45.0375 \mathrm{MHZ})$	940	
XFI		＊	L71－0446－05	MCF（39．0375MHZ）	941	
R1， 2			RK73GB1J102J	CHIPR $\quad 1.0 \mathrm{~K} \quad \mathrm{~J} \quad 1 / 16 \mathrm{~W}$		
R3			RK73GB1J103J	CHIP R 10K J $1 / 16 \mathrm{~W}$		
R4			R92－1252－05	CHIF R 0 QHM		
R5 ， 6			R92－0670－05	CHIP R O OHM		
R7－12			RK73GB1J102J	CHIP R 1．0K J 1／16W		
R13			R42－1252－05	CHIP R O OHM		
R14			RK73GB1J102J	CHIP R 1.0 K J 1／16W		
R15			R92－1252－05	CHIP R O OHM		
R16			RK73GB1J103J	CHIP R 10 K J CHIP $1 / 16 \mathrm{~W}$		
R17			RK73GB1J104J	CHIP R 100K J 1／16W		
R18			RK73GB1J123J	CHIP R 12K J $1 / 16 \mathrm{~W}$		
R19			RK73GB1J472J	CHIP R $4.7 \mathrm{~K} \quad \mathrm{~J} \quad 1 / 16 \mathrm{~W}$		
R21			RK73GB1J153J			
R23			RK73GB1J471J	CHIF R 470 J $1 / 16 \mathrm{~W}$		
R24			RK73GB1J102J	CHIPR $1.0 \mathrm{~K} \quad \mathrm{~J} \quad 1 / 16 \mathrm{~W}$		
R25			RK73GB1J154J	CHIP R 150K J 1／16W	941	
R25			RK73GB1J473J	CHIP R 47 K J J $1 / 16 \mathrm{~W}$	940	
R26			RK73GB1J102J	CHIP R 1．OK J 1／16W		
R27			RK73GB1J224J	CHIP R 220 K J $1 / 16 \mathrm{~W}$	940	
R27			RK73GB1J474J	CHIP R 470 K J $1 / 16 \mathrm{~W}$	941	
R28			RK73GB1J104J	CHIP R 100K J 1／16W		
R29			RK73GB1 J223J	CHIP R 22 K J $1 / 16 \mathrm{~W}$		
R30			RK73GB1J104J	CHIP R 100K J $1 / 16 \mathrm{~W}$		
R31			RK73GB1J223J	CHIP R 22 K J $1 / 16 \mathrm{~W}$		
R32			RK73GB1J183J	CHIP R 18K J $1 / 16 \mathrm{~W}$		
R33			RK736B1J470J	CHIP R 47 J $1 / 16 \mathrm{~W}$	940	
R33			RK73GE1 J680J	$\begin{array}{lll}\text { CHIP R } & 68\end{array}$	941	
R34－36			RK73GB1J473J	CHIP R 47 K J J $1 / 16 \mathrm{~W}$		
R37			RK73GB1J103J	CHIP R IOK J 1.16 W		
R38			RK73GB1J＊FOJ	CHIP R J \quad J 16 W		

L：Scandinavia
Y：PX（Far East，Hawaii）
Y－AAFES（Eure）

Y：AAFES（Europe）

* New Parts

Parts without Parts No. are not supplied.
Les articies non mentiones dans le Parts No. ne sont pas fournis
Teile ohne Parts No. werden noht gonefert.
TX-RX UNIT (X57-4590-XX)

Y:PX\{Far East, Hawaii)
P:Canada
T:England

* New Parts

PARTS LIST
Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden micnt gellefert

PARTS LIST

* New Parts

Parts without Parts No are not supplied
Lees articles non mentionnes dans le Parts No. ne sont pas fournis
Telle onne Parts No werden nicht geliefert
TX-RX UNIT (X57-4590-XX)

* New Parts

PARTS LIST

Parts without Parts No. are not Supplied.
Les arlicles non mentionnes dans le Parts No. ne sont Das fournis
TX-RX UNIT (X57-4590-XX) PLL/VCO (X58-4170-XX)

Parts without Parts No. are not Supplied
Les articles non mentionmos dans le Parts No. ne sont. pas fourns
Telle onne Parts No. werden nicht gellefert
PLL/VCO (X58-4170-XX)

PARTS LIST

\times New Parts
Parts without Parts No. are not supplied.
Les articles nonmentionnes dans le Parts No. ne sont pas fournis.
PLL/VCO (X58-4170-XX)
Telfe ohne Parts No. werden nucht geliefert
LCD ASSY (B38-0731-05)

TK-940/941

PARTS LIST

* New Parts

LCD ASSY (B38-0731-05)

EXPLODED VIEW

TK-940/941

PACKING

ADJUSTMENT

lest Equipment Required for Alignment

Test Equipment	Major Specifications	
1 Standard Signal Generator (SSG)	Frequency Range Modulation Output	$800 \text { to } 950 \mathrm{MHz}$ Frequency modulation and external modulation $-127 \mathrm{dBm} / 0.1 \mu \mathrm{~V}$ to greater than $-7 \mathrm{dBm} / 100 \mathrm{mV}$
2. Fower Meter	Input Impedance Operation Frequency Measurement Capablity	50S 800 to 950 MHz or more Vicinity of 30 W
3. Deviation Meter	Frequency Range	800 to 950 MHz
4. Digital Volt Meter (DVM)	Measuring Range Accuracy	1 to 10 VDC High input impedance for minimum circuit loading
5. Oscilloscope		DC through 30 MHz
6. High Sensitivity Frequency Counter	Frequency Range Frequency Stability	10 Hz to 1000 MHz 0.2 ppm or less
7. Ammeter		10A
8. AF Volt Meter (AF VTVMM)	Frequency Range Voltage Range	$\begin{aligned} & 50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & 3 \mathrm{mV} \text { to } 3 \mathrm{~V} \end{aligned}$
9. Audıo Generator (AG)	Frequency Range Output	50 Hz to 5 kHz or more 0 to 1 V
10. Distortion Meter	Capability Input Level	3% or less at 1 kHz 50 mV to 10 Vrms
11. Voltmeter	Measuring Range Input Impedance	1.5 to 30 V DC or less $50 \mathrm{k} \Omega \mathrm{N}$ or greater
12. 4Ω Dummy Load		Approx. $4 \Omega, 3 \mathrm{~W}$
13. Regulated Power Supply		13.6V, approx. 10A (adjustable from 9 to 17 V) Useful if ammeter requipped

MIC connector front view

Test cable for Microphone input

I K-940/941

ADJUSTMENT

Adjustment Location

1. Switch

SYSTEM DOWN GROUP DOWN
2. Display section (LCD)

- User mode

No.	Key name		Description			
1	PWR	Non-lock	Power supply	ON/OFF		
2	VOL	Non-lock	Receive volume, beep volume UP/DOWN			
3	SYS	Nonlock	System	UP/DOWN		
4	GRP	Non-lock	Group	UP/DOWN		
5	SCAN	Non-lock	System scan (LTR/Conventional)	ON/OFF		
System search (LTR)					\quad ON/OFF	ON/OFF
:---						
6						

AUX function (Can be set by the FPU)

1	Horn alert ON/OFF
2	Manual relay ON/OFF
3	Group name ON/OFF
4	Fixed revert call
5	Auto tel
6	Delete
7	Optional signaling reset

- Dealer mode

No.	Key name			Description	
1	PWR	Nor-lock	Power supply	ON/OFF	
2	VOL	Non-lock	Recerve volume, beep volume UP/DOWN		
3	SYS	Non-lock	System	UP/DOWN	
4	GRP	Non-lock	Group	UP/DOWN	
5	SCAN	Non-lock	Squelch	ON/OFF	
6	AUX	Nonlock	Talk around	ON/OFF	

- Tuning mode

58

No.	Key name		Description	
1	PWR	Non-lock	Power supply	ON/OFF
2	VOL	Non-lock	Recerve volume, beep volume UP/DOWN	
3	SYS	Non-lock	System Adjustment item selection	
4	GRP	Non-lock	Group Adjustment level	UP/DOWN
5	SCAN	Non-lock	Switching petween frequency mode and adjustment mode	
6	AUX	Non-lock	Adjustment data writiny	

No.	Name	Description
1	Alpha-numeric (8 digits)	Shows the group name, system, and group numbers. System : Shows a selected system number (1 to 32). Group • Shows a selected group number (1 to 250)
2	(s)	SCAN indicator
3	1	Delete indicator
4	TX	Transmission indicator
5	BUSY	Busy indicator
6	CALL	Call indicator
7	TA	Talk-around indicator
8	AUX	Displayed when the horn alert or manual relay function is turned on with the AUX key.
9	OPT	Decode latch indicator (KDD-4)
10	\geqslant	Telephone indicator

Common Section

TK-940/941

ADJUSTMENT

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	, Unit	Terminal	Unit	Parts	Method	
5. PLL lock voltage	1) Set dealer mode CH SYS $7(\mathrm{f} \mathrm{H})$ GRP 1 AUX ON (Talk-around mode) PTT. ON (Transmit)	DVM Power meter	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 2) \end{aligned}$	CV	PLL	TC51	6.7 V	$\pm 0.1 \mathrm{~V}$
	2) CH SYS 1 (f) GRP 1						Check	TK-940 : 1.2V or more TK-941:2.0V or more

Receiver Section

ADJUSTMENT

Transmitter Section

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
1. Frequency	1) Set tuning mode CH SYS 4 GRP 1 Select FRED in adjustment mode. PTT. ON	Power meter F counter	Rear pane	ANT			$\begin{aligned} & \text { TK-940 } \\ & \quad 815.500 \mathrm{MHz} \\ & \text { TK-941 } \\ & 899.025 \mathrm{MHz} \end{aligned}$	$\pm 50 \mathrm{~Hz}$
2. Maximum power check	1) Set tuning mode $\mathrm{CH} \cdot \mathrm{SYS} 4$ GRP 1 PTT. ON	Power meter	Rear panel	ANT			Check (Maximum power position)	16.5W or more
3. Power	1) Set tuning mode CH. SYS 4 GRP 1 Select PDW in adjustment mode. PTT: ON						15.0 W	$\pm 0.5 \mathrm{~W}$
4. Power check	1) Set dealer mode CH . SYS 1, 7 GRP 1 PTT: ON	Power meter Ammeter	Rear panel	$\begin{aligned} & \text { ANT } \\ & \text { DC IN } \end{aligned}$			Check	$\begin{aligned} & 12.0 \sim 18.0 \mathrm{~W} \\ & 6 \mathrm{~A} \text { or less } \end{aligned}$
	2) TA mode ON (AUX key: ON) CH SYS 7 GRP 1							$10.0 \sim 18.0 \mathrm{~W}$ 6 A or less
5. IVodulation balanced	1) Set tuning mode CH SYS 4 GRP 2 MIC input OFF Select BFL in adjustment mode. Deviation meter filter LPF 3 kHz HPF. OFF De-emphasis: OFF PTT• ON	Power meter Deviation meter Oscilloscope AF VTVM AG	Rear panel Front panel	ANT MIC	.		Make the demodulation waveform neat.	$\square \square$
6. Maximum deviation	1) Set tuning mode CH. SYS 4 GRP 1 Connect AG to the MIC terminal. Select IE V^{\prime} in adjustment mode. AG: $1 \mathrm{kHz} / 50 \mathrm{mV}$ Deviation meter filter LPF : 15 kHz HPF OFF De-emphasis. OFF PTT : ON						TK-940: 3.8 kHz TK-941: 1.7 kHz (According to the larger,+-)	$\pm 70 \mathrm{~Hz}$
7. MIC sensitivity check	1) Set tuning mode CH : SYS 4 GRP 1 AG: $1 \mathrm{kHz} / 5 \mathrm{mV}$ (TK-940) $1 \mathrm{kHz} / 2.5 \mathrm{mV}$ (TK-941) PTT: ON						Check	$\left(\begin{array}{l} \text { TK-940: } \pm 3 \mathrm{kHz} \pm 0.2 \mathrm{kHz} \\ \text { TK-941: } \pm 0.75 \mathrm{kHz} \pm 0.15 \mathrm{kHz} \end{array}\right.$

TK-940/941
ADJUSTMENT

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
8. QT deviation	1) Set tuning mode $\mathrm{CH} \cdot \mathrm{SYS} 4$ GRP 5 Select FDT in adjustment mode. Deviation meter filter LPF: 3 kHz HPF. 50 Hz PTT: ON	Power meter Deviation meter Oscilloscope AF VTVM $A G$	Rear pane\| Front panel	ANT MIC			$\begin{aligned} & \text { TK- }-940 \\ & 0.75 \mathrm{kHz}(+ \text { side }) \\ & \text { TK- } 941 \\ & : 0.45 \mathrm{kHz}(+ \text { side }) \end{aligned}$	$\pm 50 \mathrm{~Hz}$
9. DOT Deviation	1) Set tuning mode CH : SYS 4 GRP 7 Select FIDT in adjustment mode. Deviation meter filter LPF: 3 kHz HPF: OFF PTT: ON						$\begin{aligned} & \text { TK-940:0.75kHz } \\ & \text { TK-941: } 0.45 \mathrm{kHz} \end{aligned}$	$\pm 50 \mathrm{~Hz}$
10. Fine LTR	1) Set tuning mode CH : SYS 4 GRP 3 Select FID in adjustment mode. Deviation meter filter LPF: 3 kHz HPF : OFF PTT: ON						$\begin{aligned} & \text { TK-940: } 1.0 \mathrm{kHz} \\ & \text { TK-941: } 0.75 \mathrm{kHz} \end{aligned}$	$\pm 50 \mathrm{~Hz}$

Adjustment Point

ONNo.	N No.	Pin name	1/0	Function	CN No.	Pin No.	Pin name	1/0	Function
TX-RX UNIT (X57-4590-XX) (A/2) : TX-RX section						$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	ES RXD TXD EP EN PTT	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Enable input for shift register. Serial control signal output. Serial control signal input. Enable input for PLL. Enable input for D-A converter. External PTT signal output. GND: TX, Open : RX
CN1 To KCT-19	1	$\begin{aligned} & \text { DEO } \\ & H K \end{aligned}$	01	Detection signal output ($650 \mathrm{mV} / 47 \mathrm{k} \Omega$). External HOOK signal input. On hook. "L.", Off hook "H" Ignition input for KCT-18. External modulation signal input. MIC earth. Interrial MIC signal output, Externa MIC signal input (Standard modulation at $600 \Omega, 5 \mathrm{mV}$). External PTT signal input. GND . TX, Open : RX Squelch signal output. Carrier in. Active "H"					
	2								
	3	IGN	1						
	45	Di	1						
		ME							
	6	Mi	1/0		$J 1$		EXT SP	0	Output for external speaker (4W/5\% distortion).
		PTT	i 0		$J 2$		DC 13.6 V	1	Power supply input (DC 13.6V $\pm 15 \%$).
	7				J3		ANT	1/0	Connect for ANT connector.
	8	SQ			TX-R	\times U	IT (X5	45	-XX) (B/2) : Control section
$\begin{aligned} & \mathrm{CN} 2 \\ & \mathrm{TO} \\ & \mathrm{KCT}-19 \end{aligned}$	1	LOK	\bigcirc	Link complete signal output.	CN201	1	E	-	Earth.
	2			Link complete : Active "L."		2	BZ	0	Beep signal output.
		MM	1	MIC mute signal inpuit.	To	3	PSW	O	Power switch control signal output.
				Mute: "H", Unmute: Open	TX-RX				Power switch on - OV
	3	DTC	1	Data TX group control signal input.	section	4	DI	$!$	External modulation signal input.
CN3 To KCT-19	1	LOK	0	Link complete signal output.		5	DEO	1	Detection signal input.
				Link complete: Active "L"		6	MM	1	MIC mute signal input.
	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	RX0	1	Serial control signal input.					Mute : "H", Unmute: Open
		TXD	0	Serial control signal output.		7	DSN	0	RX audio tone output for KDD-4.
CN4 To KCT-19	1	HOR	0	Horn alert control signal output.		8 9	MO 8 C	0	Modulation signal output. Common 8 V input ($+8 \mathrm{~V} \pm 5 \%$).
				Signal output for horn relay drive (open collector), "L" level during horn		10	ME	1	MIC earth.
				(open collector), L level during horn drive : max. sink current 800 mA .		11	Ml	1/0	Internal MIC signal output, External MIC signal input.
	23	E	-	Earth.		12	HK	1	External HOOK signal input
		SB	0	Power output after power switch $(+13.6 \mathrm{~V} \pm 15 \%, 1 \mathrm{~A}$ max.).		12	HK	1	On hook : "L", Off hook : "H"
CN5 To INT. SP or KCT-18	12	SP	\bigcirc	Output for internal/external speaker.					Power input after power switch $(+13.6 \mathrm{~V} \pm 15 \%) .$
		E	-	Earth.		14	KEY	0	KEY signal output. TX: "H"
						15	CK	0	Ciock output for PLL/Shift register/
CN6 To Control section	3	E	-	Earth.		16	DT	0	Data output for PLL/Shift register/
		BZ	,	Beep signal input.					D-A converter.
		PSW	1	Power switch control signal input.		17	DTC	1	Data TX group control signai input.
				Power switch on : OV		18	LD	1	Lock detect input for PLL.
	4	DI	0	External modulation signal output.					Lock: "H", Unlock: "L"
	5	DEO	0	Detection signal output.		19	ES	0	Enable output for shift register.
	6	MM	0	MIC mute signal output.		20	$\mathrm{R} \times \mathrm{D}$	1	Serial control signal input.
				Mute : "H", Unmute : Open		21	TXD	O	Serial control signal output.
	7	DSN	1	RX audio tone input for KDD-4.		22	EP	0	Enable output for PLL.
	8	MO	1	Modulation signal input.		23	EN	\bigcirc	Enable output for D-A converter.
	9	8 C	0	Common 8 V output ($+8 \mathrm{~V} \pm 5 \%$).		24	PTT	1	External PTT signal input.
	1011	ME	-	MIC earth.					GND : TX, Open : RX
		M	1/0	Internal MIC signal input,	CN203	1	DBD	1	Dead beat disable input.
	12			External MIC signal output.		2	RST	1	Reset signal input.
		HK	0	External HOOK signal output. On hook : "i" Off hook • "H"	To	3	E	-	Earth.
				On hook : "L", Off hook • "H"	KDD-4	4	DSN	0	RX audio tone output.
	13	SB	0	Power output after power switch $(+13.6 \mathrm{~V} \pm 15 \%)$.		5	PT	\bigcirc	Transpond PTT signal output. GND : TX Normally 5 V
	14	KEY	1	KEY signal input. TX: "H"		6	MT	0	Decode latch signal output.
	15	CK	1	Clock input for PLL/Shift register/					Code match : Active "L"
				D-A converter.		7	8C	1	Common 8 V input ($+8 \mathrm{~V} \pm 5 \%$).
	16	DT	1	Data input for PLL/Shift register/ D-A converter.		8 9	TON NC	O	TX audio tone output.
	17	DTC	0	Data TX group control output.		9	NC.	-	Not use.
	18	LD	0	Lock detect output for PLL. Lock: "H", Un" gk : "L"					

TERMINAL FUNCTION

CN No.	Pin No.	Pin name	1/0	Function	CN No. Pin No. Pin name $1 / \mathrm{O}$				Function
CN205 To Display section	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 8 C \\ & B Z \end{aligned}$PSW	$\begin{gathered} 0 \\ i \\ 1 \\ 1 \\ 0 \\ - \\ 0 \\ 1 \\ 1 / 0 \\ 1 / 0 \end{gathered}$	Common 8 V output $(+8 \mathrm{~V} \pm 5 \%)$. Beep signal input. Power switch control signal input. Power switch on OV Reset signai output for display. Earth. Serial control signal output for display. Serial control signal input for display. PTT signal output, Serial data input/output Hook signal output, Serial data mput/output.	PLL/VCO (X58-4170-XX) : Sub unit				
					CN1	1	EP	1	Enable input for PLL
						2	CK	,	Clock input for PLL
	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	RS E MTX MRX PTT HK				3	DT	1	Data input for PLL.
						4	RE	1	VCXO 12.8MHz input for PLL.
						5	5 C	1	Common 5 V input ($+5 \mathrm{~V} \pm 5 \%$).
						6	LD	0	Lock detect output for PLL.
						7	8 C	1	Lock • "H', Unlock 'L"
									Common 8
$\begin{aligned} & \text { J201 } \\ & \text { To } \\ & \text { MIC } \\ & \text { jack. } \end{aligned}$	1	SB	\bigcirc	Power output after power switch $(+13.6 \vee \pm 15 \%, 200 \mathrm{~mA}$ max.).	CN2			0	VCO signal output.
	2				2	2 3	8 V	i	Earth. 8 V input for VCO
		EPTT		Earth. PTT signal input (GND : TX, Open : RX).		4	MD	1	Modulation signal input.
	3					5	CV	0	PLL lock voltage output.
	$\begin{aligned} & 4 \\ & 5 \end{aligned}$		-	MIC earth. MIC signal input.	LCD ASSY (B38-0731-05) : Display section				
					CN1	1	HK	1/0	Hook signal input, Serial data input/output.
			1			2	PTT	1/0	PTT signal input, Serial data input/output.
	6	HK	1/0	Hook signal input.	To	3	MRX	0	Serial control signal output for display.
				On hook: "L", Off hook • "H"	Control	4	MTX	1	Seriai control signal inpul for display.
				Serial data input/output.	section	5	E	-	Earth.
						6	RST	1	Reset signal input for display.
						7	PSW	0	Power switch control signal output.
									Power switch on: OV
						8	BZ	0	Beep signal output.
						9	8C	1	Common 8 V input ($+8 \mathrm{~V} \pm 5 \%$).

SPECIFICATIONS

Item	TK-940	TK-941
GENERAL		
Frequency Range	RX: $851 \sim 870 \mathrm{MHz}$ TX. $806 \sim 825 \mathrm{MHz}, 851 \sim 870 \mathrm{MHz}$	$\begin{aligned} & \mathrm{RX}: 935 \sim 941 \mathrm{MHz} \\ & \text { TX: } 896 \sim 902 \mathrm{MHz}, 935 \sim 941 \mathrm{MHz} \end{aligned}$
System	32 systems max.	
Group	250 groups max.	
Conventional Channels	308	
Channel Spacing	25 kHz (PLL step 12.5 kHz)	12.5 kHz
Input Voltage	13.6 V DC negative ground	
Current Drain	Less than 0.4A on standby Less than 1.0A on receive Less than 7.0A on transmit	
Duty Cycle	Receiver 100\% Transmitter 20\%	
Temperature Range	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$	
Dimensions \& Weight	$5.511^{\prime \prime}(140 \mathrm{~mm}) \mathrm{W} \times 1.58{ }^{\prime \prime}(40 \mathrm{~mm}) \mathrm{H} \times 5.32^{\prime \prime}(135 \mathrm{~mm}) \mathrm{D} \quad 950 \mathrm{~g}$	
RECEIVER (Measurement made per EtA standard EIA-204-C)		
RF Impedance	50Ω	
Sensitivity (EIA 12dB SINAD)	$0.25 \mu \mathrm{~V}$	
Modulation Acceptance	$\pm 7 \mathrm{kHz}$	$\pm 3.5 \mathrm{kHz}$
Selectivity	-75dB	-68dB
Intermodulation	-70dB	$-65 \mathrm{~dB}$
Spurious \& Image Rejection (Excepts 1/2 IF)	-75dB	
Channel Frequency Spread	19 MHz	6 MHz
Audio Power Output	4W at less than 5\% distortion	
TRANSMITTER (Measurement made per EIA, standard EIA-152-B)		
RF Power Output	15W	
RF Output Impedance	50Ω	
Spurious \& Harmonics	-60dB	
Modulation	F3E, F1D, F2D	
FM Noise	-45dB	-40dB
Microphone Impedance	Low impedance	
Audio Distortion	Less than 3\% at 1000 Hz	Less than 5% at 1000 Hz
Frequency Stability ($-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$)	$\pm 0.00025 \%$	$\pm 0.00015 \%$
Channel Frequency Spread	64 MHz	45 MHz
Applicable MIL standard		
MIL 810C Methods/Procedures	MiL 8100 Methods/Procedures	MIL 810E Methods/Procedures
510.1/Procedure 1	510.2/Procedure 1	510.3/Procedure 1
Vibration $\quad 514.2 /$ Procedure 8, 10	514.3/Procedure 1	514.4/Procedure 1
Shock	516.3/Procedure 1, 3, 4, 5, 6	516.4/Procedure 1, 3, 4, 5, 6
Applicable environmental EIA standards		

KCT-19 (ACCESSORY CONNECTION CABLE)/

KDD-4 (DTMF DECODER) / KPG-25D (PROGRAMMING DISK)

KDD-4 External View

KCT-19 External View

KPG-25D External View

KENWOOD CORPORATION
 14-6, Dogenzaka 1-chome, Shibuya-ku, Tokyo 150, Japan

KENWOOD SERVICE CORPORATION
P.O. BOX 22745, 2201 East Dominguez Street, Long Beach, CA 90801-5745, U.S.A.

KENWOOD ELECTRONICS DEUTSCHLAND GMBH
Rembrücker Str 15, 6056 Heusenstamm, Germany
KENWOOD ELECTRONICS BENELUX N.V.
Mechelsesteenweg 418 B-1930 Zaventem, Belgium
TRIO-KENWOOD FRANCE S.A.
13, Boulevard Ney, 75018 Paris, France
TRIO-KENWOOD U.K. LIMITED
KENWOOD House, Dwight Road, Watford, Herts., WD1 8EB United Kingdom
KENWOOD ELECTRONICS NEDERLAND B.V.
Amsterdamseweg 35, 1422 AC Uithoorn, The Netherlands
KENWOOD ELECTRONICS ITALIA S.p.A.
Via G. Sirtori. $7 / 920129$ Milano, Italy
KENWOOD ESPAÑA S.A.
Bolivia, 239-08020 Baffelona, Spain
KENWOOD ELECTRONICS AUSTRALIA PTY. LTD.
(A.C.N. 001499 074)
P.O. Box 504, 8 Figtree Drive, Australia Centre, Homebush, N.S.W. 2140, Australia

KENWOOD \& LEE ELECTRONICS, LTD.
Unit 3712-3724, Level 37, Tower one Metroplaza, 223 Hing Fong Road, Kwai Fong, N.T., Hong Kong
KENWOOD ELECTRONICS CANADA INC.
6070 Kestrel Road, Mississauga, Ontario, Canada L5T 1S8

LCD ASSY (B38-0731-05) Component side view

LCD ASSY (B38-0731-05)

Foil side view

pC board views TK-940/941

PLL/VCO (X58-4170-XX) (A/2) -10 : TK-940 -11 : TK-941
Component side view

PLL/VCO (X58-4170-XX) (A/2) Foil side view

DTC143EK
2SA1586
2SC3356

2SK508NV

NJM78L05UA

MC145190F-K
SC370651F

75308BGK740BE9

Component side
Pattern 1
Pattern 2

TK-940/941 pc board view
TX-RX UNIT (X57-4590-XX) (A/2) Component side view -10: TK-940 -11:TK-941

Component side

Pattern 1 Pattern 2 Pattern 3 Pattern 4	,	Ref. No.	Address	Ref. No.	Address	Ref. No.	Address
		IC4	5 E	Q6	5G	D2	3D
		IC6	8G	Q9	6G	- D7	11E
		IC8	81	010	6 F	-D9	11C
	Foil side	IC9:	10 H ,	Q17	10G	D12	11D
		IC11	6 B	019	11G	D13	11E
		IC12	6K	020	9G	D14	11D
		IC14	3K	022	4E	D15	11
				030	8B		

3SK241

TX-RX UNIT (X57-4590-XX) (A/2) Foil side view -10:TK-940 -11:TK-941

TK-940/941 pc board view

TX-RX UNIT (X57-4590-XX) (A/2) Component side view -10:TK-940 -11:TK-941

Component side
Pattern 1
Pattern 2
Patterin
Patterr

- Connect 1 and 4

Note) - Ref. No. : Parts of pattern 1.

sChematic diagram

TK-940/941 schematic diagram

