Part 3

ANT-20, ANTE-20E, AN-20SE
DominoCOM ANT-20

“Jitter STM-16 Module”

Remote Control Operating Manual
SCPI Command List
Contents

Introduction

1 ANT-20, ANT-20E, ANT-20SE. ... I-1
 1.1 General information ... I-1
 1.1.1 Overview ... I-1
 1.1.2 Module selection ... I-2
 1.1.3 Monitor mode ... I-3
 1.1.4 LabWindows/CVI driver I-3
 1.2 GPIB Remote Control interface I-3
 1.2.1 Items included ... I-3
 1.2.2 Installation ... I-4
 1.2.2.1 Overview ... I-4
 1.2.2.2 Software installation I-4
 1.2.2.3 Hardware installation I-7
 1.2.3 Connecting to GPIB I-8
 1.2.4 Device address ... I-8
 1.2.5 Interface functions I-9
 1.2.5.1 Overview ... I-9
 1.2.5.2 Device Clear I-9
 1.3 V.24/V.28 (RS 232) Remote Control interface I-9
 1.3.1 Items included ... I-9
 1.3.2 Installation ... I-9
 1.3.2.1 Software installation I-10
 1.3.3 Connecting to V.24/V.28 (RS 232) I-11
 1.3.4 Transmission parameters I-13
 1.3.5 Interface functions I-14
 1.3.5.1 Overview ... I-14
 1.3.5.2 Device Clear I-14
 2 DominoCOM ANT-20 ... I-15
 2.1 General information ... I-15
 2.1.1 Items included .. I-15
 2.1.2 Overview ... I-15
 2.1.3 Changing the configuration I-15
 2.1.4 ANT-20 mode ... I-16
Command reference

1 Common commands .. R-1
 *CAL? ... R-1
 *CLS ... R-2
 *ESE ... R-2
 *ESE? ... R-3
 *ESR? ... R-3
 *IDN? ... R-4
 *OPC ... R-4
 *OPC? ... R-5
 *OPT? ... R-5
 *RST ... R-5
 *SRE ... R-6
 *SRE? ... R-6
 *STB? ... R-7
 *TST? ... R-7
 *WAI ... R-7

2 SYSTEM subsystem .. R-9
 :SYST:DATE .. R-9
 :SYST:DATE? ... R-9
 :SYST:ERR[:NEXT]? .. R-9
 :SYST:TIME ... R-10
 :SYST:TIME? .. R-10
 :SYST:VERS? .. R-10

3 STATUS subsystem ... R-11
 3.1 Status register structure .. R-11
 3.2 STATUS commands .. R-12
 :STAT:OPERation register ... R-12
 :STAT:OPER:COND? .. R-12
 :STAT:OPER:ENAB .. R-12
 :STAT:OPER[:EVEN]? ... R-13
 :STAT:OPER:NTR .. R-13
 :STAT:OPER:PTR .. R-14
 :STAT:OPER:PTR? .. R-14
 :STAT:PRES .. R-14
 :STAT:QUEStionable register R-15
 :STAT:QUES:COND? .. R-15
 :STAT:QUES:ENAB .. R-15
 :STAT:QUES:ENAB? ... R-16
 :STAT:QUES[:EVEN]? ... R-16
4 TRIGGER subsystem ... R-19

:ABOR .. R-19
:INIT[:IMM][:ALL] ... R-19
:TRIG[:SEQ]:SOUR .. R-20
:TRIG[:SEQ]:SOUR? ... R-20
:TRIG[:SEQ]:STIM .. R-21
:TRIG[:SEQ]:STIM? .. R-21

5 SOURCE subsystem .. R-23

:SOUR:JITT:AMPL .. R-23
:SOUR:JITT:AMPL? ... R-23
:SOUR:JITT:FREQ .. R-24
:SOUR:JITT:FREQ? ... R-24
:SOUR:JITT:SOUR .. R-24
:SOUR:JITT[:STAT] ... R-25
:SOUR:JITT[:STAT]? ... R-25
:SOUR:MODE ... R-26
:SOUR:MODE? ... R-26

6 SENSE subsystem .. R-27

[:SENS]:AVER[:STAT] .. R-27
[:SENS]:AVER[:STAT]? ... R-27
[:SENS]:AVER:TIME .. R-28
[:SENS]:AVER:TIME? .. R-28
[:SENS]:DATA:ACT? .. R-29
[:SENS]:DATA:FIN? ... R-30
[:SENS]:DATA:EVEN? .. R-31
[:SENS]:DATA:EVEN:NUMB? R-34

Codes for the event memory. R-34
Alarm bit field “CSTatus”/“HSTatus” R-35
[:SENS]:FILT:HPAS:FREQ R-35
[:SENS]:FILT:HPAS:FREQ? R-35
[:SENS]:FILT:LED1[:STAT] R-36
[:SENS]:FILT:LED1[:STAT]? R-36
[:SENS]:FILT:LED2[:STAT] R-36
[:SENS]:FILT:LED2[:STAT]? R-36
[:SENS]:FILT:LED3[:STAT] R-37
[:SENS]:FILT:LED3[:STAT]? R-37
[:SENS]:FUNC:OFF .. R-38
[:SENS]:FUNC:OFF:ALL R-38
Introduction

1 ANT-20, ANT-20E, ANT-20SE

1.1 General information

1.1.1 Overview

The ANT-20 can be remotely controlled using the

- IEEE 488 (IEC 625) interface, often referred to as GPIB:
 Option BN 3035/92.10, Remote Control GPIB (PCMCIA)

- or -

- V.24/V.28 (RS 232) interface:
 Option BN 3035/91.01, Remote Control V.24

The programming commands are identical, regardless of the type of remote control interface that is used.

The ANT-20 must be switched to remote control mode manually. In remote control mode, manual control of the ANT-20 is not possible.

To set the ANT-20 to remote control mode, follow these steps:

ANT-20, ANT-20E with
Windows 3.11: ⇒ Double-click on the “Remote” icon in the “ANT-20” group in the “Program Manager” window.

Windows 95:
1. Enable remote control mode using the taskbar:
 “Start/ANT-20/Remote On”.
2. Double-click on the “ANT-20” icon on the desktop
 or -
 use the taskbar: “Start/ANT-20/ANT-20”.

To switch back to normal manual control, follow these steps:

ANT-20, ANT-20E with
Windows 3.11: ⇒ Double-click on the “Remote Disable” icon in the “ANT-20” group in the “Program Manager” window.

Windows 95:
1. Disable remote control mode using the taskbar:
 “Start/ANT-20/Remote Off”.
2. Double-click on the “ANT-20” icon on the desktop
 or -
 use the taskbar: “Start/ANT-20/ANT-20”.
From the viewpoint of remote control, each measuring module in the ANT-20 is a fully remote-controllable instrument with its own SCPI command tree, status reporting system and common command set.

The measuring module to be controlled is selected using the command MODule:SELect <module_name> (see Sec. 1.1.2).

The instrument’s display shows which measuring modules exist and which one is selected for remote control.

A built-in monitor function can be switched on for debugging purposes (see Sec. 1.1.3).

To change the type of the remote control interface and/or its accompanying configuration parameters, the batch file remote.bat must be edited.

ANT-20, ANT-20E with Windows 3.11:

1. Double-click on the “Remote Configuration” icon in the “ANT-20” group in the “Program Manager” window to edit the remote.bat file.
2. Follow the on-screen instructions.

Windows95:

2. Follow the on-screen instructions.

1.1.2 Module selection

The remote control interface of the ANT-20 supports multiple internal measuring modules. The module selection provides a mechanism to select one of these measuring modules for remote control.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Parameter form</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODule:SELeCt</td>
<td><module_name></td>
<td>[no query]</td>
</tr>
</tbody>
</table>

1 <module_name>: BASIC | JITTER | JITT16

Table I-1 Module selection

This command selects the measuring module specified by <module_name> for remote control and deselects all others. All subsequent commands (including commands in subsequent program messages) are passed to the selected measuring module. All other measuring modules are unavailable for programming until selected.

<module_name>:

- **BASIC**: Selects BASIC Module
- **JITTER**: Selects JITTER Module for bit rates up to STM4/OC12 (extension slot)
- **JITT16**: Selects JITTER Module for bit rates of STM16/OC48 (extension slot)

Note:
- This command has no query form.
- After power-on, the BASIC measuring module is selected.
- If the MODule:SELeCt <module_name> command is required in a program message, it must be the first (or the only) command in that program message.
1.1.3 Monitor mode

A monitor function can be switched on or off in remote control mode. If it is switched on, the instrument displays all messages sent to and from the instrument, corresponding to each operating step performed.

1.1.4 LabWindows/CVI driver

A LabWindows/CVI instrument driver is available for each measuring module.

Instrument drivers reduce application program development time and simplify instrument control by eliminating the need to learn the complex programming commands for each measuring module.

1.2 GPIB Remote Control interface

This section describes the GPIB Remote Control interface for applications using the ANT-20 as a remote controlled instrument.

Other applications using the ANT-20 as a GPIB controller for controlling external instruments are also possible (e.g. running the WG CATS Test Executive BN 3045 on the ANT-20 to control the ANT-20 measurement hardware plus external instruments).

To allow both these mutually exclusive operating modes to be used, the GPIB Remote Control interface and installation comprises all the software required for both operating modes.

1.2.1 Items included

The Remote Control GPIB (PCMCIA) Option BN 3035/92.10 comprises:

ANT-20, ANT-20E with Windows 3.11:
- PCMCIA GPIB card including PCMCIA to GPIB cable (2 meters)
- CardWare User’s Manual (Award Software Inc.)
- Distribution disk: CardWare Version 2.0 (Award Software Inc.)
- Installation disks: ANT-20 PCMCIA System (configured CardWare 2.0), ANT-20 GPIB Remote Control (includes NI-488.2)
- ANT-20 GPIB (NI-488.2) for Windows 3.x
- Operating Manual: Remote Control
- Brochure “SCPI and IEEE 488, Programmer’s Introduction”

Windows95:
- PCMCIA GPIB card including PCMCIA to GPIB cable (2 meters)
- Installation disks: ANT-20 GPIB Remote Control for Windows95 (includes NI-488.2M)
- Operating Manual: Remote Control
- Brochure “SCPI and IEEE 488, Programmer’s Introduction”
1.2.2 Installation

1.2.2.1 Overview

The PCMCIA GPIB interface from National Instruments Corp. (NI) is used with the NI-488.2/NI-488.2M software for GPIB Remote Control.

For ANT-20 with Windows 3.11 only:

- The NI-488.2 software requires standardized PCMCIA system software with Socket and Card Services (version 2.0 or higher) to be installed.
- A software called CardWare (written by Award Software Inc.) is used as PCMCIA system software. It can also be used with a wide variety of other PCMCIA cards.
- The CardWare software contained on the installation disk is already configured for use with the ANT-20.

1.2.2.2 Software installation

Software installation under Windows 3.11

If you ordered the Remote Control GPIB Option BN 3035/92.10 together with your ANT-20, the required software packages are already installed on the ANT-20 and the icons “Remote”, “Remote Disable” and “Remote Configuration” are shown in the “ANT-20” group in the “Program Manager” window.

Note: A release code is required to enable the Remote Control GPIB Option. For detailed information contact your nearest Wavetek Wandel Goltermann Service Center. The addresses are listed at the end of this manual.

When contacting the Service Center, always quote:

- The serial number of the ANT-20
- The version number of the ANT-20 software package

If you ordered the Remote Control GPIB Option BN 3035/92.10 separately, install the software packages as follows:

Installing the PCMCIA System software

1. Start or return to Windows.
2. Insert the ANT-20 PCMCIA System installation disk into drive A:.
3. Choose “Run ...” from the “File” menu in the “Program Manager” window and type the following command into the dialog box:

 A:\setup

 Confirm with “OK”.
4. After complete installation exit Windows, remove the installation disk from drive A:, and reboot the ANT-20.

Installing the GPIB Remote Control software

1. Start or return to Windows.
2. Insert the ANT-20 GPIB Remote Control installation disk into drive A:.
3. Choose “Run ...” from the “File” menu in the “Program Manager” window and type the following command into the dialog box:
 A:\setup
 Confirm with “OK”.
4. After complete installation exit Windows, remove the installation disk from drive A:, and reboot the ANT-20.

Installing the ANT-20 Remote Control software

1. Start or return to Windows.
2. Choose “Run...” from the “File” menu in the “Program Manager” window and type the following command into the dialog box:
 C:\ANT20.SUP\DISK1\setup.exe
 Confirm with “OK”.
3. Follow the on-screen instructions to install the ANT-20 Remote Control.
4. After complete installation exit Windows, and reboot the ANT-20.

After this installation procedure, the ANT-20 can be set to remote control mode by double-clicking on the “Remote” icon in the “ANT-20” group in the “Program Manager” window.

Installing the GPIB (NI-488.2) for Windows 3.x

This software is required for applications that use the ANT-20 as a GPIB controller for controlling external instruments (e.g. for running the WG CATS Test Executive BN 3045 on the ANT-20 to control the ANT-20 measurement hardware plus external instruments).

1. Start or return to Windows.
2. Insert the installation disk ANT-20 GPIB (NI-488.2) for Windows 3.x into drive A:.
3. Choose “Run...” from the “File” menu in the “Program Manager” window and type the following command into the dialog box:
 A:\setup
 Confirm with “OK”.
4. Follow the on-screen instructions to complete the installation.
5. After complete installation exit Windows, remove the installation disk from drive A:, and reboot the ANT-20.

After this installation procedure, you can access the “NI-488.2 PCMCIA GPIB Software” group in the “Program Manager” window.

To view or modify the NI-488.2 software configuration, double-click the “GPIB” icon from the “Control Panel” in the “Main” group of the “Program Manager” window.

Software installation under Windows95

If you ordered the Remote Control GPIB Option BN 3035/92.10 together with your ANT-20, the required software packages are already installed on the ANT-20 and the icons “Remote On”, “Remote Off” and “Remote Configuration” are shown in the Windows95 file folder “ANT-20”.

Note: A release code is required to enable the Remote Control GPIB Option.
For detailed information contact your nearest Wavetek Wandel Goltermann Service Center. The addresses are listed at the end of this manual.
When contacting the Service Center, always quote:
• The serial number of the ANT-20
• The version number of the ANT-20 software package

Verify the PCMCIA GPIB card installation as described in the section “Verify the PCMCIA GPIB card installation” below.
If you ordered the Remote Control GPIB Option BN 3035/92.10 separately, install the software packages as follows:

Installing the GPIB Remote Control software

1. Start or return to Windows95.
2. Insert the ANT-20 GPIB Remote Control for Windows95 installation disk 1 into drive A:.
3. Click the Windows95 “Start” button, choose “Run...” and type the following command into the dialog box:
 A:\setup
 Confirm with “OK”.
4. Follow the on-screen instructions during the installation procedure and enter
 C:\Tmp\Gpib
 as GPIB distribution directory.
5. After completion, click the Windows95 “Start” button, choose “Run...” and type the following command into the dialog box:
 C:\Tmp\Gpib\gpib9513.exe
 Confirm with “OK”.
6. Follow the on-screen instructions during the setup procedure and use the default selection for components to install (all components selected).
7. After complete installation:
 – Shut down the ANT-20.
 – Remove the installation disk from drive A:.
 – Insert the PCMCIA GPIB card into a free PCMCIA slot.
 – Reboot the ANT-20.

Enable support for DOS applications as described below (by default, DOS support is disabled):

1. Return to Windows95, click the Windows95 “Start” button, choose “Settings” and then choose “Control Panel” from the submenu.
 In the “Control Panel” window, double-click the “System” icon.
2. In the “Device Manager” tab of the “System Properties” window, choose “View devices by type”,
 click on the “National Instruments GPIB Interfaces” icon in the list and then
 click on the “Properties” button.
3. In the “General” tab in the “National Instruments GPIB Interfaces Properties” window select
 the checkbox “Enable Support for DOS GPIB Applications” and confirm with “OK”.
4. Reboot the ANT-20.

Verify the PCMCIA GPIB card installation

1. The PCMCIA GPIB card must be in the slot!
2. Click the Windows95 “Start” button, choose “Settings” and then choose “Control Panel” from the submenu.
 In the “Control Panel” window, double-click the “System” icon.
3. In the “Device Manager” tab of the “System Properties” window, choose “View devices by type”,
 double-click the “National Instruments GPIB Interfaces” icon in the list and then double-click “PCMCIA GPIB” in the sublist.
4. In the “GPIB Settings” tab of the “PCMCIA GPIB Properties” window, the entry for “Interface Name” must be “GPIB0”. If it is not, change it to “GPIB0”.
5. Deactivate the “System Controller” checkbox.
 (All other parameters are properly set by starting the ANT-20 remote control mode after completion of the installation procedure.)
6. Confirm with “OK”.

I-6 Introduction
Installing the ANT-20 Remote Control software

1. Start or return to Windows95.
2. Click the Windows95 “Start” button,
 choose “Run...” and type the following command into the dialog box:
 C:\ANT20.SUP\DISK1\setup.exe
 Confirm with “OK”.
3. Follow the on-screen instructions to install the ANT-20 Remote Control and select only the
 “Remote Control Software” as component to install.

The following patch installation described in steps 4, 5 and 6 is only required for ANT-20
software versions less or equal 7.0. It has no effect on versions greater than 7.0.

4. Insert the ANT-20 GPIB Remote Control for Windows95 installation disk 3 into drive A:.
5. Click on the Windows95 “Start” button, choose “Run...” and
 type the following command into the dialog box:
 A:\setup
 Confirm with “OK”.
6. Follow the on-screen instructions.
 After completion, remove the installation disk from drive A:.

Note: Only for ANT-20 software versions less or equal 7.0:
 If there is any need to execute C:\ANT20.SUP\DISK1\setup.exe (with the component
 “Remote Control Software” selected) at a later time again, the above described patch
 installation (steps 4, 5 and 6) must also be executed again.

7. Exit Windows95 and reboot the ANT-20.

After this installation procedure, you can enable the remote control mode by using the taskbar:

1. “Start/ANT-20/Remote On”.
2. Then double-click on the “ANT-20” icon on the desktop or
 use the taskbar: “Start/ANT-20/ANT-20”.

1.2.2.3 Hardware installation

1. Insert the PCMCIA GPIB card into a free PCMCIA socket the same way you insert a disk into
 a floppy drive.
 The PCMCIA GPIB has no jumpers or switches to set, and you do not need to power down
 the ANT-20 when you insert or remove the card.
2. Connect the PCMCIA GPIB cable to the PCMCIA GPIB card.
1.2.3 Connecting to GPIB

The GPIB Remote Control interface is equipped with a standard 24-way connector conforming to IEEE 488.1.

GPIB cables of various lengths are available for connecting the ANT-20 to other instruments and to the bus controller:

- 1.2 m long: Part number K 420
- 2.0 m long: Part number K 421

Note: The total length of GPIB cable must not exceed 2 meters x the number of instruments in the interface system.
- Up to 15 instruments can be connected to the interface system. The maximum cable run used to connect a group of instruments is 20 meters. For more information refer to the IEEE 488.1 standard.
- Longer distances can be bridged using interface couplers (2-wire or 4-wire connections, if necessary with suitable modems).

1.2.4 Device address

Each instrument in the interface system must have a unique address to allow the controller to access each one individually.

The ANT-20 address can be changed by editing the remote.bat batch file. Any address in the range 0 to 30 can be selected.

ANT-20, ANT-20E with

Windows 3.11:
1. Double-click on the “Remote Configuration” icon in the “ANT-20” group in the “Program Manager” window to edit the remote.bat file.
2. Follow the on-screen instructions.

Windows 95:
2. Follow the on-screen instructions.

Note: Make sure that a given address is used only once within the interface system. The controller address is reserved for the controller.
1.2.5 Interface functions

1.2.5.1 Overview

<table>
<thead>
<tr>
<th>Interface function</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH1</td>
<td>Source Handshake</td>
</tr>
<tr>
<td></td>
<td>Complete capability</td>
</tr>
<tr>
<td>AH1</td>
<td>Acceptor Handshake</td>
</tr>
<tr>
<td></td>
<td>Complete capability</td>
</tr>
<tr>
<td>T8</td>
<td>Talker</td>
</tr>
<tr>
<td></td>
<td>No Talk Only capability</td>
</tr>
<tr>
<td></td>
<td>No Serial Poll capability</td>
</tr>
<tr>
<td>L4</td>
<td>Listener</td>
</tr>
<tr>
<td></td>
<td>No Listen Only capability</td>
</tr>
<tr>
<td>SR0</td>
<td>Service Request</td>
</tr>
<tr>
<td></td>
<td>No capability</td>
</tr>
<tr>
<td>RL0</td>
<td>Remote/Local</td>
</tr>
<tr>
<td></td>
<td>No capability</td>
</tr>
<tr>
<td>PP0</td>
<td>Parallel Poll</td>
</tr>
<tr>
<td></td>
<td>No capability</td>
</tr>
<tr>
<td>DC1</td>
<td>Device Clear</td>
</tr>
<tr>
<td></td>
<td>Complete capability</td>
</tr>
<tr>
<td>DT0</td>
<td>Device Trigger</td>
</tr>
<tr>
<td></td>
<td>No capability</td>
</tr>
<tr>
<td>C0</td>
<td>Controller</td>
</tr>
<tr>
<td></td>
<td>No capability</td>
</tr>
</tbody>
</table>

Table I-2 Interface functions conforming to the IEEE 488.1 standard

1.2.5.2 Device Clear

When the IEEE 488 interface message Device Clear (DCL) or Selected Device Clear (SDC) is sent to the ANT-20, a device clear message is routed to all internal measuring modules, regardless of whether they are selected or deselected.

The device clear message initializes remote control of the instrument and ensures that a subsequently sent program message will be accepted and processed.

No instrument initialization is performed by DCL or SDC. To initialize the instrument, select every measuring module and send the reset command *RST (MODule:SELect <module_name>; *RST).

1.3 V.24/V.28 (RS 232) Remote Control interface

1.3.1 Items included

The Remote Control V.24/RS 232 Option BN 3035/91.01 consists of

- Remote Control Operating Manual
- Brochure “SCPI and IEEE 488, Programmer’s Introduction”

1.3.2 Installation

The built-in serial port (COM1) of the embedded PC-AT is used for remote control via RS 232.
1.3.2.1 Software installation

Software installation under Windows 3.11

If you ordered the Remote Control V.24/V.28 (RS 232) Option BN 3035/91.01 together with your ANT-20, the required software package is already installed on the ANT-20 and the icons “Remote”, “Remote Disable” and “Remote Configuration” are shown in the “ANT-20” group in the “Program Manager” window.

Note: A release code is required to enable the Remote Control V.24/V.28 (RS 232) Option. For detailed information contact your nearest Wavetek Wandel Goltermann Service Center. The addresses are listed at the end of this manual.
When contacting the Service Center, always quote:
• The serial number of the ANT-20
• The version number of the ANT-20 software package

If you ordered the Remote Control V.24/V.28 (RS 232) Option BN 3035/91.01 separately, install the software package as follows:

Installing the ANT-20 Remote Control software

1. Start or return to Windows
2. Choose “Run...” from the “File” menu in the “Program Manager” window and type the following command into the dialog box:
 C:\ANT20.SUP\DISK1\setup.exe
 Confirm with “OK”.
3. Follow the on-screen instructions to install the ANT-20 Remote Control.
4. After complete installation exit Windows, and reboot the ANT-20.

After this installation procedure, the ANT-20 can be set to remote control mode by double-clicking on the “Remote” icon in the “ANT-20” group in the “Program Manager” window.

Software installation under Windows95

If you ordered the Remote Control V.24/V.28 (RS 232) Option BN 3035/91.01 together with your ANT-20, the required software package is already installed on the ANT-20 and the icons “Remote On”, “Remote Off” and “Remote Configuration” are shown in the Windows95 file folder “ANT-20”.

Note: A release code is required to enable the Remote Control V.24/V.28 (RS 232) Option. For detailed information contact your nearest Wavetek Wandel Goltermann Service Center. The addresses are listed at the end of this manual.
When contacting the Service Center, always quote:
• The serial number of the ANT-20
• The version number of the ANT-20 software package
If you ordered the Remote Control V.24/V.28 (RS 232) Option BN 3035/91.01 separately, install the software package as follows:

Installing the ANT-20 Remote Control software

1. Start or return to Windows 95.
2. Click the Windows 95 “Start” button, choose “Run...” and type the following command into the dialog box:
 `C:\ANT20.SUP\DISK1\setup.exe`
 Confirm with “OK”.
3. Follow the on-screen instructions to install the ANT-20 Remote Control.
4. After complete installation exit Windows 95, and reboot the ANT-20.

After this installation procedure, you can enable the remote control mode by using the taskbar:

1. “Start/ANT-20/Remote On”.
2. Then double-click on the “ANT-20” icon on the desktop or use the taskbar: “Start/ANT-20/ANT-20”.

1.3.3 Connecting to V.24/V.28 (RS 232)

The interface connector (serial port COM1) is a 9-way SUB-D male connector.

<table>
<thead>
<tr>
<th>Pin</th>
<th>ITU-T V.24</th>
<th>DIN 66 020</th>
<th>EIA/TIA RS 232</th>
<th>Description ITU-T V.24 (RS 232)</th>
<th>Input (I) or Output (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>103</td>
<td>D1</td>
<td>BA</td>
<td>TXD Transmitted data</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>104</td>
<td>D2</td>
<td>BB</td>
<td>RXD Received data</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>105</td>
<td>S2</td>
<td>CA</td>
<td>RTS Request to send</td>
<td>O</td>
</tr>
<tr>
<td>8</td>
<td>106</td>
<td>M2</td>
<td>CB</td>
<td>CTS Ready for sending/Clear to send</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>107</td>
<td>M1</td>
<td>CC</td>
<td>DSR Data set ready</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>E2</td>
<td>AB</td>
<td>SGND Signal ground or common return</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>109</td>
<td>M5</td>
<td>CF</td>
<td>DCD Data channel received line signal detector/Data carrier detect</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>108.2</td>
<td>S1.2</td>
<td>CD</td>
<td>DTR Data terminal ready</td>
<td>O</td>
</tr>
<tr>
<td>9</td>
<td>125</td>
<td>M3</td>
<td>CE</td>
<td>RI Calling indicator/Ring indicator</td>
<td>I</td>
</tr>
</tbody>
</table>

Table I-3 Pinning and signal description
The connection of an ANT-20 to a PC is shown below. Both the ANT-20 and the PC function as Data Terminal Equipment (DTE):

![9-way connection diagram]

Fig. I-1 9-way connection

![25-way connection diagram]

Fig. I-2 25-way connection

An appropriate cable with both 9-way and 25-way SUB-D female connectors on each end is available:

Part number K 764 (3.0 m long)
1.3.4 Transmission parameters

The baud rate can be changed by editing the remote.bat batch file.

ANT-20, ANT-20E with Windows 3.11:
1. Double-click on the “Remote Configuration” icon in the “ANT-20” group in the “Program Manager” window to edit the remote.bat file.
2. Follow the on-screen instructions.

Windows 95:
2. Follow the on-screen instructions.

The following baud rates can be selected:
- 1200 bit/s
- 2400 bit/s
- 4800 bit/s
- 9600 bit/s
- 19200 bit/s
- 38400 bit/s
- 57600 bit/s

The interface operates in full-duplex (FDX) mode.

The other transmission parameters are fixed and cannot be changed:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Number of stop bits per character</td>
<td>1</td>
</tr>
<tr>
<td>Number of data bits per character</td>
<td>8</td>
</tr>
<tr>
<td>Flow control</td>
<td>Hardware handshake by control lines RTS/CTS</td>
</tr>
</tbody>
</table>

Table I-4 Fixed V.24/RS-232 Transmission parameters
1.3.5 Interface functions

1.3.5.1 Overview

There is no functional equivalence to the GPIB interface functions Service Request and Serial Poll.

However, the GPIB interface function Device Clear is simulated by a BREAK signal (see Sec. 1.3.5.2, Page I-14).

1.3.5.2 Device Clear

When the BREAK signal is sent to the ANT-20, a device clear message is routed to all internal measuring modules, regardless of whether they are selected or deselected.

BREAK is detected when the RXD input is at positive voltage (i.e. logical 0 or SPACE) for the entire character frame including the stop bit.

The device clear message initializes remote control of the instrument and ensures that a subsequently sent program message will be accepted and processed.

No instrument initialization is performed by the device clear message.

To initialize the instrument, select every measuring module and send the reset command *RST (MODule:SELect <module_name>; *RST).
2 DominoCOM ANT-20

2.1 General information

2.1.1 Items included

The delivery includes the following items relating to remote control:

- PCMCIA GPIB card including PCMCIA to GPIB cable (2 meters)
- Configuration disk: DominoCOM ANT-20 Remote Control
- Remote Control Operating Manual
- Brochure "SCPI and IEEE 488, Programmer's Introduction"

For DominoCOM ANT-20 with Windows 3.11 only:

- CardWare User’s Manual (Award Software Inc.)
- Distribution disk: CardWare Version 2.0 (Award Software Inc.)

2.1.2 Overview

The DominoCOM ANT-20 can be remotely controlled using the

- IEEE 488 (IEC 625) interface, often referred to as GPIB
- or –
- V.24/V.28 (RS 232) interface

The programming commands are identical, regardless of the type of remote control interface that is used.

From the viewpoint of remote control, each measuring module in the DominoCOM ANT-20 is a fully remote-controllable instrument with its own SCPI command tree, status reporting system and common command set.

The measuring module to be controlled is selected using the command MODule:SELection <module_name> (see Sec. 2.1.5, Page I-17).

Factory-set configuration:

<table>
<thead>
<tr>
<th>Interface type</th>
<th>Baud rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.24/V.28 (RS-232)</td>
<td>9600 bit/s</td>
</tr>
</tbody>
</table>

Refer to Sec. 2.1.3, Page I-15, for changing the type of remote control interface and/or its accompanying configuration parameters.

DominoCOM ANT-20 can operate in the ANT-20 mode with the use of an external monitor, keyboard and mouse. Refer to Sec. 2.1.4, Page I-16, for detailed information.

2.1.3 Changing the configuration

To change the type of remote control interface and/or its accompanying configuration parameters, follow these steps

1. Edit the remote.bat batch file (on the configuration disk) by using an external PC.
 Refer to the readme.txt file (on the configuration disk) for detailed editing information.
2. Insert the configuration disk into drive A: of the DominoCOM ANT-20 and reboot the DominoCOM ANT-20 (switch power off, then power on).
2.1.4 ANT-20 mode

By connecting an external monitor, keyboard and mouse to the embedded PC-AT, the DominoCOM ANT-20 can be operated in the same way as an ANT-20.

The display shows which measuring modules exist and which one is selected for remote control.

A monitor function can be switched on for debugging purposes during remote control mode that displays all messages sent to and from the DominoCOM ANT-20, corresponding to each operating step performed.

Edit the remote.bat batch file (for changing the type of the remote control interface and/or its accompanying configuration parameters) as follows:

DominoCOM ANT-20 with Windows 3.11:
1. Double-click on the “Remote Configuration” icon in the “ANT-20” group in the “Program Manager” window.
2. Follow the on-screen instructions.

Windows95:
1. Click on the “Remote Configuration” icon via taskbar: “Start/ANT-20/Remote Configuration”.
2. Follow the on-screen instructions.

To leave remote control mode and enter normal manual control, follow these steps

DominoCOM ANT-20 with Windows 3.11:
⇒ Double-click on the “Remote Disable” icon in the “ANT-20” group in the “Program Manager” window.

Windows95:
1. Disable remote mode using the taskbar: “Start/ANT-20/Remote Off”.
2. Then double-click on the “ANT-20” icon on the desktop or use the taskbar: “Start/ANT-20/ANT-20”.

To switch back to remote control mode, follow these steps

DominoCOM ANT-20 with Windows 3.11:
⇒ Double-click on the “Remote” icon in the “ANT-20” group in the “Program Manager” window.

Windows95:
1. Enable remote mode using the taskbar: “Start/ANT-20/Remote On”.
2. Then double-click on the “ANT-20” icon on the desktop or use the taskbar: “Start/ANT-20/ANT-20”.
2.1.5 Module selection

The remote control interface of the DominoCOM ANT-20 supports multiple internal measuring modules. The module selection provides a mechanism to select one of these measuring modules for remote control.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Parameter form</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODule:SELect</td>
<td><module_name>¹</td>
<td>[no query]</td>
</tr>
</tbody>
</table>

¹ <module_name>: BASIC | JITTER | JITT16

Table I-5 Module selection

This command selects the measuring module specified by <module_name> for remote control and deselects all others. All subsequent commands (including commands in subsequent program messages) are passed to the selected measuring module. All other measuring modules are unavailable for programming until selected.

<module_name>:

BASIC: Selects BASIC Module
JITTER: Selects JITTER Module for bit rates up to STM4/OC12 (extension slot)
JITT16: Selects JITTER Module for bit rates of STM16/OC48 (extension slot)

Note:
• This command has no query form.
• After power-on, the BASIC measuring module is selected.
• If MODule:SELect <module_name> command is required in a program message, it must be the first (or the only) command in that program message.

2.1.6 LabWindows/CVI driver

A LabWindows/CVI instrument driver is available for each measuring module.

Instrument drivers reduce application program development time and simplify instrument control by eliminating the need to learn the complex programming commands for each measuring module.

2.2 GPIB Remote Control interface

This section describes the GPIB Remote Control interface for applications using the DominoCOM ANT-20 as a remote controlled instrument.

Applications using the DominoCOM ANT-20 as a GPIB Controller for controlling external instruments are also possible (e.g. running the WG CATS Test Executive BN 3045 on the DominoCOM ANT-20 to control the DominoCOM ANT-20 measurement hardware plus external instruments).

To allow both these mutually exclusive operating modes to be used, the GPIB Remote Control interface and installation comprises all the software required for both operating modes.
2.2.1 Installation

2.2.1.1 Overview

The PCMCIA GPIB interface from National Instruments Corp. (NI) is used with the NI-488.2/NI-488.2M software for GPIB Remote Control. This software is already installed on the DominoCOM ANT-20.

For DominoCOM ANT-20 with Windows 3.11 only:

- The NI-488.2 software requires standardized PCMCIA system software with Socket and Card Services (version 2.0 or higher) to be installed.
- A software called CardWare (written by Award Software Inc.) is used as PCMCIA system software. It can also be used with a wide variety of other PCMCIA cards.
- The CardWare software is already installed on the DominoCOM ANT-20 and suitably configured.

2.2.1.2 Configuration for GPIB

Set the configuration parameters:

- Interface type GPIB
- Device address

by editing the remote.bat batch file.

Refer to Sec. 2.1.3, Page I-15, for detailed information.

Each instrument in the interface system must have an unique address to allow the controller to access each one individually.

Any address in the range 0 to 30 can be selected.

Note: Make sure that a given address is used only once within the interface system. The controller address is reserved for the controller.

2.2.1.3 Hardware installation

1. Insert the PCMCIA GPIB card into a free PCMCIA socket the same way you insert a disk into a floppy drive.
 The PCMCIA GPIB has no jumpers or switches to set, and you do not need to power down the DominoCOM ANT-20 when you insert or remove the card.
2. Connect the PCMCIA GPIB cable to the PCMCIA GPIB card.
2.2.2 Connecting to GPIB

The GPIB Remote Control interface is equipped with a standard 24-way connector conforming to IEEE 488.1.

GPIB cables of various lengths are available for connecting the DominoCOM ANT-20 to other instruments and to the bus controller:

- 1.2 m long: Part number K 420
- 2.0 m long: Part number K 421

Note:

- The total length of GPIB cable must not exceed 2 meters x the number of instruments in the interface system.
- Up to 15 instruments can be connected to the interface system. The maximum cable run used to connect a group of instruments is 20 meters. For more information refer to the IEEE 488.1 standard.
- Longer distances can be bridged using interface couplers (2-wire or 4-wire connections, if necessary with suitable modems).

2.2.3 Interface functions

2.2.3.1 Overview

<table>
<thead>
<tr>
<th>Interface function</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH1</td>
<td>Source Handshake Complete capability</td>
</tr>
<tr>
<td>AH1</td>
<td>Acceptor Handshake Complete capability</td>
</tr>
<tr>
<td>T8</td>
<td>Talker No Talk Only capability</td>
</tr>
<tr>
<td>L4</td>
<td>Listener No Listen Only capability</td>
</tr>
<tr>
<td>SR0</td>
<td>Service Request No capability</td>
</tr>
<tr>
<td>RL0</td>
<td>Remote/Local No capability</td>
</tr>
<tr>
<td>PP0</td>
<td>Parallel Poll No capability</td>
</tr>
<tr>
<td>DC1</td>
<td>Device Clear Complete capability</td>
</tr>
<tr>
<td>DT0</td>
<td>Device Trigger No capability</td>
</tr>
<tr>
<td>C0</td>
<td>Controller No capability</td>
</tr>
</tbody>
</table>

Table I-6 Interface functions conforming to the IEEE 488.1 standard
2.2.3.2 Device Clear

When the IEEE 488 interface message Device Clear (DCL) or Selected Device Clear (SDC) is sent to the DominoCOM ANT-20, a device clear message is routed to all internal measuring modules, regardless of whether they are selected or deselected.

The device clear message initializes remote control of the instrument and ensures that a subsequently sent program message will be accepted and processed.

No instrument initialization is performed by DCL or SDC.

To initialize the instrument, select every measuring module and send the reset command *RST (MODule:SELect <module_name>; *RST).
2.3 V.24/V.28 (RS 232) Remote Control interface

2.3.1 Installation

2.3.1.1 Overview

The built-in serial port (COM1) of the embedded PC-AT is used for remote control via RS 232.

2.3.1.2 Configuration for V.24/V.28 (RS 232)

Set the configuration parameters:
- Interface type V.24/V.28 (RS 232)
- Baud rate

by editing the remote.bat batch file.
Refer to Sec. 2.1.3, Page I-15.

The following baud rates can be selected:
- 1200 bit/s
- 2400 bit/s
- 4800 bit/s
- 9600 bit/s
- 19200 bit/s
- 38400 bit/s
- 57600 bit/s

The interface operates in full-duplex (FDX) mode.

The other transmission parameters are fixed and cannot be changed:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Number of stop bits per character</td>
<td>1</td>
</tr>
<tr>
<td>Number of data bits per character</td>
<td>8</td>
</tr>
<tr>
<td>Flow control</td>
<td>Hardware handshake by control lines RTS/CTS</td>
</tr>
</tbody>
</table>

Table I-7 Fixed V.24/RS 232 Transmission parameters
2.3.2 Connecting to V.24/V.28 (RS 232)

The interface connector (serial port COM1) is a 9-way SUB-D male connector.

<table>
<thead>
<tr>
<th>Pin</th>
<th>ITU-T V.24</th>
<th>DIN 66 020</th>
<th>EIA/TIA RS 232</th>
<th>Description ITU-T V.24 (RS 232)</th>
<th>Input (I) or Output (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>103</td>
<td>D1</td>
<td>BA</td>
<td>TXD Transmitted data</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>104</td>
<td>D2</td>
<td>BB</td>
<td>RXD Received data</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>105</td>
<td>S2</td>
<td>CA</td>
<td>RTS Request to send</td>
<td>O</td>
</tr>
<tr>
<td>8</td>
<td>106</td>
<td>M2</td>
<td>CB</td>
<td>CTS Ready for sending/Clear to send</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>107</td>
<td>M1</td>
<td>CC</td>
<td>DSR Data set ready</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>E2</td>
<td>AB</td>
<td>SGND Signal ground or common return</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>109</td>
<td>M5</td>
<td>CF</td>
<td>DCD Data channel received line signal detector/Data carrier detect</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>108.2</td>
<td>S1.2</td>
<td>CD</td>
<td>DTR Data terminal ready</td>
<td>O</td>
</tr>
<tr>
<td>9</td>
<td>125</td>
<td>M3</td>
<td>CE</td>
<td>RI Calling indicator/Ring indicator</td>
<td>I</td>
</tr>
</tbody>
</table>

Table I-8 Pinning and signal description
The connection of a DominoCOM ANT-20 to a PC is shown below. Both the DominoCOM ANT-20 and the PC function as Data Terminal Equipment (DTE):

Fig. I-3 9-way connection

Fig. I-4 25-way connection

An appropriate cable with both 9-way and 25-way SUB-D female connectors on each end is available:

Part number K 764 (3.0 m long)
2.3.3 Interface functions

2.3.3.1 Overview

There is no functional equivalence to the GPIB interface functions Service Request and Serial Poll.

However, the GPIB interface function Device Clear is simulated by a BREAK signal (see Sec. 2.3.3.2).

2.3.3.2 Device Clear

When the BREAK signal is sent to the DominoCOM ANT-20, a device clear message is routed to all internal measuring modules, regardless of whether they are selected or deselected.

BREAK is detected when the RXD input is at positive voltage (i.e. logical 0 or SPACE) for the entire character frame including the stop bit.

The device clear message initializes remote control of the instrument and ensures that a subsequently sent program message will be accepted and processed.

No instrument initialization is performed by the device clear message.

To initialize the instrument, select every measuring module and send the reset command *RST (MODule:SELect <module_name>; *RST).
3 TX/RX SCPI block diagram

Fig. I-5 TX/RX SCPI block diagram
4 Operating information

This chapter gives the programmer some basic information which should make it easier to program this device.

- Program messages are executed in the order they are received from the controller. However, the execution of any command does not start before the PMT (Program Message Terminator <NL>) or any other sequential command is received. This gives full flexibility in controlling the device without the need to worry about the dependencies between individual commands, because the settings of coupled commands received within a single message are checked after the whole message is received.

- Commands are treated as “overlapped commands” except where otherwise noted. Overlapped commands allow the next command to be executed before the preceding command has finished execution. This gives better performance and makes it possible to change some settings while a measurement is running, for example. You can use the common command *WAI to force sequential operation whenever you need to.

- Any error detected within a program message is written into the error queue. You can read entries out of the error queue using the SYST:ERR? command. Any program message is read from the input buffer and parsed as far as possible to detect potential errors. Nevertheless, the device setting may be undefined after any error.

- Queries are not allowed to have side effects. Thus, queries of commands set in the same program message will return the old command setting.

- Note that using the SCPI short form of the commands (capital letters) will reduce operational overhead and can increase your system performance.

- The input buffer size is 4096 bytes (4 kB).

- The output buffer size is 8192 bytes (8 kB). Requesting a response with more than 8192 bytes would cause a query error.
5 Command hierarchy

5.1 Introduction

This section is intended to give programmers an overview of the hierarchical relationships between the commands.

Each command is independent. However, since the parameters are related, each parameter has a priority between 1 and 4, with 1 being the highest and 4 the lowest.

If a higher-priority parameter is modified, lower-priority parameters may be automatically modified as well. This automatic mechanism assures logically consistent instrument settings that comply with standards, thereby avoiding error messages. It also simplifies programming since many settings are made automatically and do not need to be programmed.

The priorities come into play when individual commands are sent to the instrument. However, if multiple commands are grouped in a command sequence, the priorities are inactive within the command sequence.

Note: Send individual commands in order of decreasing priority so that settings are not overwritten by subsequent commands.

If you transmit command sequences, be careful to provide consistent data since the instrument does not make automatic corrections in this case.

5.2 Command hierarchy table

<table>
<thead>
<tr>
<th>Remote Command</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST on page R-5</td>
<td>1</td>
</tr>
<tr>
<td>:SOUR:JITT:FREQ on page R-24</td>
<td>2</td>
</tr>
<tr>
<td>[:SENS]:JITT:FREQ on page R-42</td>
<td>2</td>
</tr>
<tr>
<td>all other commands</td>
<td>3</td>
</tr>
</tbody>
</table>

Table I-9 Command hierarchy table
6 Programming examples

This chapter contains some short sample programs to help you get familiar with the remote control operation of this device.

6.1 Notation

The sample programs are written in C programming language style using the functions “clear”, “write”, “wait” and “read” as placeholders for the different functions used by programmers depending on their programing language.

Note: A “NOEND” as the second parameter of the function “write” indicates that the same program message is continued in the next line without sending a program message terminator (PMT). An “END” indicates that a program message terminator (PMT) should be sent.
Multiple commands can be appended into one “big” program message using NOEND. Checking of coupled parameters and the execution of all commands starts after the PMT or any sequential command is received.

6.2 Example 1 (Peak to peak jitter measurement)

This sample program performs a simple 2488 Mbit/s (STM16 / OC48) jitter measurement. Note that the default device setting after a *RST command is a 2 Mbit/s framed PDH signal. This sample program sets the device receiver and transmitter in the same way.

```c
// Select Basic Module to talk to (only required for ANT-20 and not for the ANX VXI modules)
write ("MOD:SEL BASIC", END);
// Clear status register and error queue.
write ("*CLS", END);
// Reset device to standard setting.
// TX and RX set to 2 Mbit/s framed signal.
write ("*RST", END);

// Set transmitter to 2488 Mbit/s optical SDH signal.
write ("":SOUR:MODE SDH;"",NOEND);
write ("":SOUR:DATA:SDH:RATE STM16;",END);

// Set receiver to 2488 Mbit/s optical SDH signal.
write ("":SENS:MODE SDH;"",NOEND);
write ("":SENS:DATA:SDH:RATE STM16;",END);

// Select Jitter STM-16 Module to talk to (only required for // ANT-20 and not for the ANX VXI modules).
write ("MOD:SEL JITT16", END);
// Clear status register and error queue.
write ("*CLS", END);
// Reset device to standard setting.
write ("*RST", END);
```
// Set Jitter STM-16 generator.
write ("SOUR:JITT:AMPL 1;",NOEND);
// Jitter frequency 1000Hz
write ("SOUR:JITT:FREQ 1000;",NOEND);
// Switch Jitter STM-16 generator on
write ("SOUR:JITT ON;",END);

// AGAIN select Basic Module to talk to (only required for
// ANT-20 and not for the ANX VXI modules).
write ("MOD:SEL BASIC",END);
// route signal clock connection of Basic Module to the Jitter
// STM-16 Module. Enables transmitter jitter capabilities.
write ("INP:CLOC:JITT ON",END);

// AGAIN select Jitter STM-16 Module to talk to (only required
// for ANT-20 and not for the ANX VXI modules).
write ("MOD:SEL JITT16",END);

// Set Jitter STM-16 receiver.
// Select jitter peak to peak value as requested result.
write ("SENS:FUNC:ON 'JITT:PPE'",END);
// Wait until the device settling time has finished.
wait(10);
// place results into the output queue.
write ("SENS:DATA:ACT?",END);
// Read response from the Jitter STM-16 Module.
read();
// The response can look like this: 54,0.98
// indicating a valid result id (54)
// and a current jitter peak to peak value of 0.98UI
6.3 Example 2 (wander measurement)

This sample program sets the receiver for a 2488 Mbit/s (STM16 / OC48) wander measurement. Note that the default device setting after a *RST command is a 2 Mbit/s framed PDH signal.

```plaintext
// Select Basic Module to talk to (only required for ANT-20 and // not for the ANX VXI modules).
write ("MOD:SEL BASIC",END);
// Clear status register and error queue.
write ("*CLS", END);
// Reset device to standard setting.
// TX and RX set to 2 Mbit/s framed signal.
write ("*RST", END);

// Set receiver to 2488 Mbit/s optical SDH signal.
write (":SENS:MODE SDH;",NOEND);
write (":SENS:DATA:SDH:RATE STM16;",END);

// Select Jitter STM-16 Module to talk to (only required for ANT-20 and // not for the ANX VXI modules).
write ("MOD:SEL JITT16",END);
// Clear status register and error queue.
write ("*CLS", END);
// Reset device to standard setting.
write ("*RST", END);

// Set wander receiver.
// Select wander mode
write (":SENS:MODE WAND;",NOEND);
// Select max. wander time interval error value as // requested result.
write ("SENS:FUNC:ON ‘WAND:MTIE’",END);
// Set measurement duration to 10 seconds.
write ("SENS:SWE:TIME 10", END);
// start measurement.
write ("INIT", END);
// Wait until measurement has finished and // place results into the output queue.
write ("*WAI;SENS:DATA:FIN?",END);
// Read response from device.
read();
// The response can look like this: 101,1.5E-9 // indicating a valid result id (101) // and a current wander value of 1.5E-9 seconds.
```
7 Release notes

This section contains a summary of all additions included from software release V7.0 onwards.

7.1 New commands

:SOUR:MODE on page R-26
[:SENS]:JITT:FREQ on page R-42
[:SENS]:JITT:MODE on page R-43
[:SENS]:JITT:RMS:INT:PER on page R-44
[:SENS]:WAND:SAMP:RATE on page R-49

7.2 Changed commands

- Codes for the event memory on page R-34 ff.: “SVALue:WANDer:TIE” added.
Notes:
Command reference

1 Common commands

Instrument behavior is based on:

The common commands that are implemented are given below in alphabetical order.

CAL?

Instrument calibration query.

Parameter None

Comments Requests the instrument to perform an internal self calibration and to return the result. The response indicates whether or not the instrument completed the calibration without error. A value of 0 indicates that the calibration has been completed successfully.

The instrument signals the need for calibration using bit 8 of the “questionable status register” (see Status register structure on page R-11).

See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Note: The instrument is set to the reset state (as set by a *RST command) after a *CAL? command.

Response

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>Calibration has been completed successfully</td>
</tr>
<tr>
<td>-1:</td>
<td>Calibration failed</td>
</tr>
<tr>
<td>-2:</td>
<td>Calibration failed (warm-up time not reached)</td>
</tr>
<tr>
<td>-3:</td>
<td>Calibration failed (EEPROM write error)</td>
</tr>
<tr>
<td>-10:</td>
<td>Calibration failed (calibration currently not possible)</td>
</tr>
</tbody>
</table>

Example

```
*CAL?
```

Response: 0

Related commands None
CLS

Clear Status Command.

Parameter

None

Comments

Clears the data accumulated in the registers. Causes a partial initialization of remote control. The masks contained in the registers (ENABLE Register) are not altered (see also SCPI Syntax and Style Section 4.1.3.2).

The following actions take place:

- Clearing of all EVENT registers in the status register structure.
- Clearing of the error queue and all other queues which affect the status register structure.
- Interruption of an *OPC synchronization possibly underway, without a 1 being entered into bit 0 of the standard event status register.
- Interruption of an *OPC? synchronization possibly underway, without a 1 being entered into the output queue.

See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example

*CLS

Related commands

*RST on page R-5

ESE

*ESE <mask> Standard Event Status Enable Command.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mask</td>
<td>numeric</td>
<td>#H00 - #HFF or #B00000000 - #B11111111 or 0 - 255</td>
<td>0</td>
</tr>
</tbody>
</table>

Comments

Sets the mask for the ESR register.

See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example

*ESE 32

Related commands

*ESR? on page R-3
*ESE? on page R-3
*ESE?

Standard Event Status Enable Query.

Parameter None

Comments Reads the mask for the ESR register. See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example *ESE?
Response: 64

Related commands *ESR? on page R-3
*ESE on page R-2

*ESR?

Standard Event Status Register Query.

Parameter None

Comments Reads out the status register ESR. Range from 0 - 255. See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example *ESR?
Response: 64

Related commands *ESE on page R-2
IDN?

Identification Query.

Parameter

None

Comments

Reads out the instrument identification consisting of 4 fields, separated by ",":

- **Manufacturer**: WANDEL&GOLTERMANN
- **Instrument name**: ANT-20 / <Keycode no.>
- **Serial no.**: A-0050
- **Firmware level**: <Software version>/ <Product no.>/ <Version>/ <VXI code(HEX)>/ <Card ID(HEX)>

Example

```
*IDN?
```

Response: WANDEL&GOLTERMANN,ANT-20/0A1234500000,B-0078,6.00/3035/01/0C06/1011<NL>

Related commands

None

Note: This command must always be the last query in a programming command (see also IEEE 488.2 Section 10.14.2.2). The response is always terminated with a <NL> (0A HEX).

OPC

Operation Complete Command.

Parameter

None

Comments

Sets the OPC bit in the standard event status register ESR as soon as the instrument has assumed the idle state. Used to synchronize overlapping commands. Use of this command makes sense only in conjunction with a service request (SRQ).

See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Note: Execution of this command is started after all previously received commands (sequential command).

Example

```
*OPC
```

Related commands

*OPC? on page R-5
*WAI on page R-7
*OPC?

Operation Complete Query.

Parameter: None

Comments: Outputs an ASCII “1” to the output buffer of the instrument as soon as it is in the idle state. As soon as all settings in the instrument are complete, a “1” is written to the output buffer. Used to synchronize the user and instrument for overlapping commands.

Example: *OPC?

Related commands: *OPC on page R-4, *WAI on page R-7

*OPT?

Option Identification Query.

Parameter: None

Comments: Outputs a list of the options available in the instrument.

Note: This command must always be the last query in a programming command (see also IEEE 488.2 Section 10.20.2.2). The response is always terminated with a <NL> (0A HEX).

Example: *OPT?

Response: 3035/90.69 ANT-20 with wander analyzer STM16 option.

Related commands: None

*RST

Reset Command.

Parameter: None

Comments: Instrument initialization. The instrument goes to the STOP state and sets itself to defined default settings. The result memory, event FIFO and list of desired results formed with :SENS:FUNC are cleared! “*RST” does not include the initialization operations which are executed with “*CLS”!

See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Note: Execution of this command is started after all previously received commands (sequential command).

Example: *RST

Related commands: *CLS on page R-2
SRE

*SRE <mask> Service Request Enable Command.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mask</td>
<td>numeric</td>
<td>#H00 - #HFF or #B00000000 - #B11111111 or 0 - 255</td>
<td>0</td>
</tr>
</tbody>
</table>

Comments Sets the mask for service request (SRQ).
See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Note: Bit number 6 (MSS) cannot be set and is ignored.

Example *SRE 128

Related commands *SRE? on page R-6
*STB? on page R-7

SRE?

Service Request Enable Query.

Parameter None

Comments Reads out the bit mask (0 - 191) for forming the service request (SRQ).
See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Note: Bit number 6 (MSS) cannot be set and is always read as 0.

Example *SRE?
Response: 128

Related commands *SRE on page R-6
*STB? on page R-7
STB?

Read Status Byte Query.

Parameter: None

Comments: Reads out the status byte register (0 - 255).

See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details

Example:
*STB?
Response: 128

Related commands:
*SRE on page R-6
STATUS subsystem on page R-11 ff.

TST?

Self Test Query.

Parameter: None

Comments: Reads out the result of the power-on self-test.

0 = test completed without errors
1 = test found errors

Example:
*TST?
Response: 0

Related commands: None

WAI

Wait to Continue Command.

Parameter: None

Comments: Waits until all previously started commands have finished.

See also “WG SCPI and IEEE488 Programmer’s Introduction” for more details

Note: This command is started after all previously received commands are executed (sequential command).

Example:
*WAI

Related commands:
*OPC on page R-4
*OPC? on page R-5
Notes:
2 SYSTEM subsystem

:SYST:DATE

:SYST:DATE <year>, <month>, <day> sets the current date in the instrument.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>year</td>
<td>numeric</td>
<td>1970 - 2037</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>month</td>
<td>numeric</td>
<td>1 - 12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>day</td>
<td>numeric</td>
<td>1 - 31</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The setting is synchronized to the next, device-internal complete second. As a result, erroneous values can be read if you do a read-out immediately after a previous setting. The setting is not changed by a *RST command.

Dependencies: none

Example: SYST:DATE 1995,5,1 sets the date to May 1, 1995.

Related commands: :SYST:TIME on page R-10

:SYST:DATE?

:SYST:DATE? provides the current date in the instrument.

Example: SYST:DATE?
Response: 1995,5,1

:SYST:ERR[:NEXT]?

:SYST:ERR[:NEXT]? reads the oldest entry out of the SCPI error queue.

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example: SYST:ERR?
Response: 0,"No error" if error queue is empty.
:SYST:TIME

:SYSTem:TIME <hour>, <minute>, <second> sets the current time of day of the instrument.

Parameter	Name	Type	Range	Default
 | hour | numeric | 0 - 23 | 0
 | minute | numeric | 0 - 59 | 0
 | second | numeric | 0 - 59 | 0

Note: The setting is synchronized to the next, device-internal complete second. As a result, erroneous values can be read if you do a read-out immediately after a previous setting. The setting is not changed by a *RST command.

Dependencies | none
Example | SYST:TIME 12,10,0 sets the time of day to 12:10:0.
Related commands | :SYST:DATE on page R-9

:SYST:TIME?

:SYSTem:TIME? provides the current time of day of the instrument.

Example: SYST:TIME?
Response: 23,50,59

:SYST:VERS?

:SYSTem:VERSion? provides the SCPI version number on which this instrument is based.

Example | :SYST:VERS?
Response: 1996.0 for version 1996 release 0.
3 STATUS subsystem

3.1 Status register structure

The status register structure is oriented towards the one issued by the SCPI. The following figure shows the status register structure:

![Status Register Diagram](image)

Fig. R-1 Status register structure
3.2 STATUS commands

:STATus:OPERation register

The OPERation status register contains conditions which are part of the instrument's normal operation.

:STAT:OPER:COND?

:STATus:OPERation:CONDition? provides the current value of the condition register.

<table>
<thead>
<tr>
<th>Comments</th>
<th>Bit position</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>If this bit is set the instrument is currently performing a calibration.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>If this bit is set the instrument is currently measuring.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>If this bit is set the instrument is in a “wait for trigger” state of the trigger model (e.g. waiting for the start time during a timer controlled measurement).</td>
</tr>
</tbody>
</table>

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example

:STAT:OPER:COND?
Response: 0

:STAT:OPER:ENAB

:STATus:OPERation:ENABle <value> specifies the value of the enable register.

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>value</td>
<td>numeric</td>
<td>#H0000 - #H7FFF or #B0000000000000000 - #B0111111111111111 or 0 - 32767</td>
<td>#H0</td>
</tr>
</tbody>
</table>

Note: Bit 15 cannot be set.

Example

:STAT:OPER:ENAB 16
:STAT:OPER:ENAB?

:STATus:OPERation:ENABle? provides the current setting of the enable register.

See SCPI handbook “Command Reference”
or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example
:STAT:OPER:ENAB?
Response: 0

:STAT:OPER[:EVEN]??

:STATus:OPERation[:EVEN]t? reads the event register.

See SCPI handbook “Command Reference”
or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Note: Reading the event register clears its content.

Example
STAT:OPER?
Response: 16 if a measuring event was detected.

:STAT:OPER:NTR?

:STATus:OPERation:NTRansition <value> specifies the value of the negative transition register.

See SCPI handbook “Command Reference”
or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>numeric</td>
<td></td>
<td>#H0000 - #H7FFF or #B0000000000000000 - #B0111111111111111 or 0 - 32767</td>
<td>#H0</td>
</tr>
</tbody>
</table>

Note: Bit 15 cannot be set.

Example: STAT:OPER:NTR 16

:STAT:OPER:NTR?

:STATus:OPERation:NTRansition? provides the current setting of the negative transition register.

See SCPI handbook “Command Reference”
or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example
:STAT:OPER:NTR?
Response: 0
:STAT:OPER:PTR

:STATus:OPERation:PTRansition <value> specifies the value of the positive transition register.

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>numeric</td>
<td>#H0000 - #H7FFF or #B0000000000000000 - #B011111111111111 or 0 - 32767</td>
<td>#H0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bit 15 cannot be set.

Example

`:STAT:OPER:PTR 16`

:STAT:OPER:PTR?

:STATus:OPERation:PTRansition? provides the current setting of the positive transition register.

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example

`:STAT:OPER:PTR?`

Response: 0

:STAT:PRES

:STATus:PRESet presets the status register structure.

See SCPI handbook “Command Reference” for more details.

Parameter

none

Comments

The following actions are taken:

- [:STAT:OPER:ENAB is set to all zeros.](#)
- [:STAT:QUES:ENAB is set to all zeros.](#)
- all positive transition registers (...:PTR) are set to all ones.

Example

`:STAT:PRES`
:STATus:QUESTionable register

The QUESTionable status register set contains bits which give an indication of the quality of various aspects of the signal.

:STAT:QUES:COND?

:STATus:QUESTionable:CONDition? provides the current value of the questionable status register.

<table>
<thead>
<tr>
<th>Comments</th>
<th>Bit position</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>If this bit is set results can be questionable because the module needs a calibration (use the *CAL? query to initiate a calibration).</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>If this bit is set jitter results cannot be taken and are set to invalid (PLL not locked).</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>If this bit is set wander results cannot be taken and are set to invalid (PLL not locked).</td>
</tr>
</tbody>
</table>

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example

:STAT:QUES:COND?
Response: 0

:STAT:QUES:ENAB

:STATus:QUESTionable:ENABLE <value> specifies the value of the enable register.

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>value</td>
<td>numeric</td>
<td>#H0000 - #H7FFF or #B0000000000000000 - #B0111111111111111 or 0 - 32767</td>
<td>#H0</td>
</tr>
</tbody>
</table>

Note: Bit 15 cannot be set.

Example

:STAT:QUES:ENAB 16
:STAT:QUES:ENAB?

:STATus:QUESTionable:ENABle? provides the current setting of the enable register.

See SCPI handbook “Command Reference”
or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example
:STAT:QUES:ENAB?
Response: 0

:STAT:QUES[:EVEN]?

:STATus:QUESTionable[:EVENt]? reads the event register.

See SCPI handbook “Command Reference”
or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Note: Reading the event register clears its content.

Example
:STAT:QUES?
Response: 16 if a measuring event was detected.

:STAT:QUES:NTR

:STATus:QUESTionable:NTRansition <value> specifies the value of the negative transition register.

See SCPI handbook “Command Reference”
or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Parameter	Name	Type	Range	Default
value | numeric | #H0000 - #H7FFF or #B0000000000000000 - #B0111111111111111 or 0 - 32767 | #H0

Note: Bit 15 cannot be set.

Example
:STAT:QUES:NTR 16

:STAT:QUES:NTR?

:STATus:QUESTionable:NTRansition? provides the current setting of the negative transition register.

See SCPI handbook “Command Reference”
or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example
:STAT:QUES:NTR?
Response: 0
:STAT:QUES:PTR

:STATus:QUESTionable:PTRansition <value> specifies the value of the positive transition register.

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>value</td>
<td>numeric</td>
<td>#H0000 - #H7FFF or #B0000000000000000 - #B0111111111111111 or 0 - 32767</td>
<td>#H0</td>
</tr>
</tbody>
</table>

Note: Bit 15 cannot be set.

Example

:STAT:QUES:PTR 16

:STAT:QUES:PTR?

:STATus:QUESTionable:PTRansition? provides the current setting of the positive transition register.

See SCPI handbook “Command Reference” or “WG SCPI and IEEE488 Programmer’s Introduction” for more details.

Example

:STAT:QUES:PTR?

Response: 0
Notes:
4 TRIGGER subsystem

The Trigger subsystem is used for Start/Stop control of measurements (see also [:SENS]:SWE on page R-47)

:ABOR

:ABORt halts a measurement in progress or a timer sequence.

Parameter

None

Dependencies

This command works only if a measurement has been previously activated using :INIT[:IMM][:ALL]

Example:

ABOR

Related commands

:INIT[:IMM][:ALL] on page R-19
:TRIG[:SEQ]:SOUR on page R-20
:TRIG[:SEQ]:STIM on page R-21

:INIT[:IMM][:ALL]

:INI Ti ate[:IMM ediate][:ALL] starts the measurement on the next trigger.

Parameter

None

Dependencies

None

Comments

The measurement is started on the next trigger. This can be when the next full second is reached or, under timer control, by reaching the time preset with :TRIG[:SEQ]:STIM on page R-21. The trigger condition to be fulfilled is specified using :TRIG[:SEQ]:SOUR on page R-20.

Example:

INIT

Related commands

:ABOR on page R-19
:TRIG[:SEQ]:SOUR on page R-20
:TRIG[:SEQ]:STIM on page R-21
:**TRIG[:SEQ]:SOUR**

:**TRIGger[:SEQuence]:SOURce** <source> specifies the trigger source for the TRIGGER subsystem.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td></td>
<td>AINTernal</td>
<td>STIMe</td>
</tr>
</tbody>
</table>

Dependencies: None

Comments:
- **AINTernal:** The trigger condition is satisfied when the next complete second is reached.
- **STIMe:** The trigger condition is satisfied when the start time set with **:TRIG[:SEQ]:STIM** on page R-21 is reached.
- **IMMEDIATE:** The trigger condition is satisfied in an asynchronous manner, i.e. at the next possible point in time.

Example: **TRIG:SOUR TI** for the timer as a trigger source.

Related commands:
- **:INIT[:IMM][:ALL]** on page R-19
- **:ABOR** on page R-19
- **:TRIG[:SEQ]:STIM** on page R-21

:**TRIG[:SEQ]:SOUR?**

This query provides the current trigger source setting.

Example:

TRIG[:SEQuence]:SOUR?

Response: AINT

if internal triggering on the next complete second is activated.
:TRIG[:SEQ]:STIM

:TRIGger[:SEQUence]:STIMe <year>,<month>,<day>,<hour>,<minute>,second> specifies the starting time of a timer-based measurement.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>year</td>
<td>numeric</td>
<td>1994 - 2037</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>month</td>
<td>numeric</td>
<td>1 - 12</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>day</td>
<td>numeric</td>
<td>1 - 31</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>hour</td>
<td>numeric</td>
<td>0 - 23</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>minute</td>
<td>numeric</td>
<td>0 - 59</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>second</td>
<td>numeric</td>
<td>0 - 59</td>
<td>none</td>
</tr>
</tbody>
</table>

Dependencies
Effective only if :TRIG[:SEQ]:SOUR = STIM.

Comments
This command is used to set the point in time at which a timer-based measurement is to start.

Example
:TRIG:STIM 1996,6,3,18,30,00 sets the measurement start to June 3, 1996 at 18:30:00.

Related commands
:INIT[:IMM][:ALL] on page R-19
:ABOR on page R-19
:TRIG[:SEQ]:SOUR on page R-20

:TRIG[:SEQ]:STIM?

provides the current setting of the measurement start time.

Example
:TRIG:STIM?
Response: 1995,12,31,23,30,20
for measurement start on December, 31, 1995 at 23:30:20.
Notes:
5 SOURCE subsystem

Note: For clarity, options have been shown in abbreviated form in this chapter, e.g. “90.xx” instead of “BN 3035/90.xx”.

This subsystem is used to set the jitter generator.

Note: The status, amplitude and frequency of the Wander Generator for STM-16 are set on the Jitter Module (see :SOUR:WAND:AFAC). The command :SOUR:MODE on page R-26 is also required. The Jitter Generator and Receiver option 90.68 is required if no option is specified (firmware release earlier than 7.0).

:SOUR:JITT:AMPL

:SOURce:JITTer:AMPLitude <value> sets the jitter amplitude of the generator.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>numeric</td>
<td>0.002 - 800</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Dependencies

The jitter amplitude will be limited to a non-conflicting value when the jitter frequency is set (if source is INTernal) and when the jitter source is switched to INTernal.

Comments

All values in UI (Unit Interval).

The step size is

- 0.001 UI up to 2 UI
- 0.005 UI up to 20 UI
- 0.025 UI up to 100 UI
- 0.25 UI up to 800 UI

Example

:SOUR:JITT:AMPL 1 sets the jitter amplitude to 1 UI.

Related commands

:SOUR:JITT:FREQ on page R-24
:SOUR:JITT[:STAT] on page R-25
:SOUR:MODE on page R-26

:SOUR:JITT:AMPL?

provides the current setting of the jitter amplitude

Example:

SOUR:JITT:AMPL?
Response: 3E-3 for 0.003 UI
:SOURCE:JITT:FREQ

:SOURce:JITTer:FREQuency <value> sets the jitter frequency of the generator.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>numeric</td>
<td>0.1 - 20000000</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

Dependencies
The maximum jitter frequency depends on the jitter amplitude set by :SOURCE:JITT:AMPL on page R-23. See the jitter module specifications for more details.

Comments
All values in Hz. IEEE 488.2 suffix units (HZ | KHZ | MHZ) are supported.

Example:
SOUR:JITT:FREQ 2 KHZ sets the jitter frequency to 2000 Hz.

Related commands
:SOUR:JITT:AMPL on page R-23
:SOUR:JITT[:STAT] on page R-25
:SOUR:MODE on page R-26

:SOUR:JITT:FREQ?

provides the current setting of the jitter frequency.

Example:
SOUR:JITT:FREQ?
Response: 1000 for 1000 Hz

:SOUR:JITT:SOUR

:SOURce:JITTer:SOURce <source> determines the signal source for the jitter modulator.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>INTernal</td>
<td>EXTernal</td>
<td>INT</td>
</tr>
</tbody>
</table>

Dependencies
None

Comments

EXTernal: External jitter modulation using the signal from port [50].

Example:
SOUR:JITT:SOUR INT selects internal modulation.

Related commands
:SOUR:JITT[:STAT] on page R-25
:SOUR:JITT:SOUR?

provides the current setting for the signal source of the jitter modulator.

Example

:SOUR:JITT:SOUR?
Response: INT

:SOUR:JITT[:STAT]

:SOURce:JITTer[:STATe] <state> activates / deactivates jitter generation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Dependencies
Option 90.50 or 90.51 or 90.52 (STM16 hardware) is required. To enable the jitter capabilities of the Basic Module (Mainframe), \(\text{INP}:\text{CLOC}:\text{JITT} \text{ ON}; \text{ and } \text{:INP}:\text{CLOC}:\text{WAND OFF}; \) (default) must be transmitted to the Basic Module.

Comments
ON | 1: Jitter generator switched on
OFF | 0: Jitter generator switched off

Example:

SOUR:JITT ON switches the jitter generator on.

Related commands
:SOUR:JITT:AMPL on page R-23
:SOUR:JITT:FREQ on page R-24
:SOUR:MODE on page R-26

:SOUR:JITT[:STAT]?

provides the jitter generator status.

Example

SOUR:JITT?
Response: 1 if jitter generation is activated.
:SOUR:MODE

:SOURce:MODE <mode> sets the mode of the generator (SOURce).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mode</td>
<td>discrete</td>
<td>JITTer</td>
<td>WANDer</td>
</tr>
</tbody>
</table>

Dependencies

This command requires firmware release 7.0 or later and related options see below.

For wander generation by the Jitter STM-16 Module, the command :SOUR:DATA:SDH:RATE STM16; is transmitted to the Basic Module (Mainframe).

First the commands :SOUR:MODE WAND; :SOUR:WAND:AFAC 16; AMPL <value>; FREQ <value>; STAT ON; and :SOUR:DATA:RATE STM1; are sent to the Jitter Module.

Then the commands :INP:CLOC:WAND ON; and :INP:CLOC:JITT ON; must be transmitted to the Basic Module.

Comments

JITT: Option 90.88 is required.

WAND: Options 90.81, 90.85 and 90.87 are required.

Example

:SOUR:MODE WAND allows wander signal generation.

Related commands

:SOUR:JITT[:STAT] on page R-25

On Basic Module:

:SOUR:DATA:SDH:RATE

:INP:CLOC:JITT

:INP:CLOC:WAND

On Jitter Module:

:SOUR:DATA:RATE

:SOUR:MODE

:SOUR:WAND:AFAC

:SOUR:WAND:AMPL

:SOUR:WAND:FREQ

:SOUR:WAND[:STAT]

:SOUR:MODE?

:SOURce:MODE? provides the current mode of the generator (SOURce).

Example

:SOUR:MODE?

Response: WAND if wander generation is activated.
6 SENSE subsystem

Note: For clarity, options have been shown in abbreviated form in this chapter, e.g. “90.xx” instead of “BN 3035/90.xx”.

This subsystem is used to set the Jitter and Wander Receiver, configure measurements and query results.

Note: The Jitter Generator and Receiver option 90.68 and the Wander Receiver option 90.69 are required if no option is specified (firmware release earlier than 7.0).

[:SENS]:AVER[:STAT]

[:SENSe]:AVERage[:STATe] <state> switches the averaging mechanism of the jitter receiver on or off.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Dependencies None

Comments ON | 1: Averaging switched on
OFF | 0: Averaging switched off

Example :AVER ON switches averaging on.

Related commands [:SENS]:AVER:TIME on page R-28

[:SENS]:AVER[:STAT]?

This query provides the status of the averaging mechanism of the jitter receiver.

Example :AVER?
Response: 1 if the averaging mechanism is switched on.
[:SENS]:AVER:TIME

[:SENSe]:AVERage:TIME <duration> determines the averaging period of a jitter measurement.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>numeric</td>
<td>1 - 5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Dependencies

Only valid if [:SENS]:AVER[:STAT] = ON.

Comments

The current measurement results are averaged over the time period (in seconds) set by this command.

Example

:AVER:TIME 1 sets period to 1 second.

Related commands

[:SENS]:AVER[:STAT] on page R-27

[:SENS]:AVER:TIME?

provides the current setting of the averaging period of a measurement.

Example

:AVER:TIME?
Response: 5 5 seconds averaging period.
[:SENS]:DATA:ACT?

[:SEnSe]:DATA:ACTual? [<id>[[, <id>]]]* reads current results.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>string</td>
<td></td>
<td>e.g. “JITT:POS:PEAK” for maximum positive jitter value</td>
<td>none</td>
</tr>
</tbody>
</table>

Dependencies

Coupled with [:SENS]:FUnC[:ON].

Valid results are only available if a measurement was previously initiated (except status results ("CST") or other results which are continuously taken).

Comments

The result(s) designated with <id>s are read out, or (if there is no <id> parameter) all results which were previously selected with [:SENS]:FUnC[:ON] on page R-39. The list of available results is found under Result IDs for :SENS:DATA and :SENS:FUnC commands on page R-40.

Note: Current and final results are identical once the measurement has finished. If a result is invalid for any reason, the corresponding response code is negative and the result value is set to NAN (not a number = 9.91E37).

Example

DATa:ACT? "CST"
Response: 40,2

Meaning:
40: response code “CST”
2: value of the Alarm bit field “CSTatus”/“HSTatus” indicating LTI (loss of timing information) jitter, PLL unlocked.

Related commands

Result IDs for :SENS:DATA and :SENS:FUnC commands on page R-40
[:SENS]:FUnC[:ON] on page R-39
[:SENS]:DATA:FIN? on page R-30
:INIT[:IMM][:ALL] on page R-19
[:SENS]:DATA:FIN?

[:SENSe]:DATA:FINal? [<id>[, <id>]*] reads final measurement results.

Parameter

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>string</td>
<td>e.g. "JITT:PPE:MAX" for maximum peak-peak jitter value</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

The result(s) designated with <id>s are read out, or (if there is no <id> parameter) all results which were previously selected with [:SENS]:FUNC[:ON] on page R-39. The list of available results is found under Result IDs for :SENS:DATA and :SENS:FUNC commands on page R-40.

Dependencies

Coupled with: [:SENS]:FUNC[:ON]

Valid final results are only available if a measurement was previously initiated and has finished.

Valid final results are not available for results taken continuously.

Response

The table below shows the response, if multiple results are selected.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>response code (1st result)</td>
<td>numeric response code ID</td>
</tr>
<tr>
<td>result value (1st result)</td>
<td>response type as described in Result IDs for :SENS:DATA and :SENS:FUNC commands on page R-40</td>
</tr>
<tr>
<td>response code (2nd result)</td>
<td>numeric response code ID</td>
</tr>
<tr>
<td>result value (2nd result)</td>
<td>response type 2nd result</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>response code (last result)</td>
<td>numeric response code ID</td>
</tr>
<tr>
<td>result value (last result)</td>
<td>response type last result</td>
</tr>
</tbody>
</table>

Note: If a result is invalid for any reason, the corresponding response code is negative and the result value is set to **NAN** (not a number = 9.91E37).
Example

If positive and negative peak jitter value measurement was previously selected using [:SENS]:FUNC[:ON] “JITT:POS:PEAK:MAX”, “JITT:NEG:PEAK:MAX”, a result given by :DATA:FIN? can look like this:
51,0.12,53,0.023

Meaning:
51 response code “JITT:POS:PEAK:MAX”
0.12 positive peak jitter result = 0.12 UI
53 response code “JITT:NEG:PEAK:MAX”
0.023 negative peak jitter result = 0.023 UI

or:
-51,9.91E37,-53,9.91E37

meaning:
-51 response code “JITT:POS:PEAK:MAX” invalid
9.91E37 positive peak jitter result invalid, NAN (not a number) is returned
-53 response code “JITT:NEG:PEAK:MAX” invalid
9.91E37 negative peak jitter result invalid, NAN (not a number) is returned

Related commands
Result IDs for :SENS:DATA and :SENS:FUNC commands on page R-40
[:SENS]:FUNC[:ON] on page R-39
[:SENS]:SWE:TIME on page R-47
[:SENS]:DATA:ACT? on page R-29
:INIT[:IMM][:ALL] on page R-19
:ABOR on page R-19

[:SENS]:DATA:EVEN?

[:SENS]:DATA:EVEN? <number> reads the “number” of accumulated events from the event FIFO. The event FIFO is only used currently for “wander TIE values” or “positive/negative/peak-peak jitter values” or “RMS values” that are continuously taken every second during a jitter/wander measurement (as set by [:SENS]:MODE on page R-46). Within this sequence, changes of the alarm status (Alarm bit field “CSTatus”/“HSTatus” on page R-35) will also force an entry in the event FIFO with a corresponding time stamp. This FIFO thus allows the device programmer to obtain equidistant samples in an asynchronous manner.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 - 200</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Dependencies
FIFO entries are only available if a wander measurement was previously initiated.
Comments

Jitter/Wander samples and events are stored in an event FIFO (First In First Out), where they can be extracted with this command. The data are extracted as in a normal FIFO structure, i.e. the oldest entry first, then the second oldest, etc. You can determine whether an event has occurred by monitoring the status register (Status register structure on page R-11). The FIFO content is cleared by initiating a new measurement or by a *RST command.

Each event (error, alarm or sample) causes at least 2 entries in the FIFO:
1st entry: Time stamp (response code = 10)
2nd entry: Jitter PPEak sample (response code = 1052) or an alarm entry (response code = 1000) or another jitter sample.

For wander TIE see Example 2 below.

If more than one event occurs between 2 time stamps, the first entry contains the time stamp and following entries contain the events pertaining to the same time stamp.

If at least one event entry is available, bit 0 of the status byte is set (see also STATUS subsystem on page R-11 ff.).

Note: The FIFO can contain up to 2000 entries. If the FIFO is not read in time, an overflow entry (response code = 1) is appended to the FIFO.

Response

Each entry in the FIFO has the following structure:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>response code</td>
<td>numeric (the response code)</td>
</tr>
<tr>
<td>value</td>
<td>numerical value</td>
</tr>
</tbody>
</table>

Example 1

:DATA:EVEN? 2 supplies 2 events out of the FIFO.
Response: 10,0.1930400E7,1052,1.478

Meaning:
10 ID 1st event (the time stamp)
0.1930400E7 ms since 1970/1/1
1052 ID 2nd event (jitter PPEak value).
1.478 The jitter PPEak value measured at the above time stamp was 1.478 UI.

For wander TIE p.e. with 30 samples per second 10 times the following “definite length arbitrary block response data” (IEEE Std 488-2) with corresponsing time stamps and IDs are emitted:
#216 [=following 16 bytes with 2 * int16 and 3 * reals]
with the “Swapped IEEE Std 754" formats (least significant byte first):
#216 [SINT16=2 bytes] [SINT16=2 bytes] [SFP32=4 bytes] [SFP32=4 bytes]
[SFP32=4 bytes]

So the 1st 100 ms of the second:
#216 [number of samples=3] [offset=0] [sample 1] [sample 2] [sample 3]
The 2nd 100 ms of the second:
#216 [number of samples=3] [offset=0] [sample 4] [sample 5] [sample 6]
and 7 times so on to:
The 10th (last) 100 ms of the second:
#216 [number of samples=3] [offset=0] [sample 28] [sample 29] [sample 30]

Example 2
:DATA:EVEN? 21 supplies 21 events out of the FIFO
Response: 10,0.2598600E7,1100,0.345E-9,1101,#216[16 bytes],10,0.2598700E7,#216[16 bytes], { and 7 times so on to } 10,0.2599500E7,#216[16 bytes]
Meaning:
10 ID 1st event (the time stamp)
0.2598600E7 ms since 1970/1/1
1100 ID 2nd event (wander TIE value)
0.345E-9 The wander TIE value measured at the above time stamp was 0.345E-9 seconds
1101 ID 3rd event (wander TIE sample block data)
#216 [16 bytes] “definite length arbitrary block response data”
The 2nd 100 ms:
10 ID 4th event (the time stamp)
0.2598700E7 ms since 1970/1/1
1101 ID 5th event (wander TIE sample block data)
#216 [16 bytes] “definite length arbitrary block response data”
and 7 times so on to:
The 10th 100 ms:
10 ID 20th event (the time stamp)
0.2599500E7 ms since 1970/1/1
1101 ID 21th event (wander TIE sample block data)
#216 [16 bytes] “definite length arbitrary block response data”
For wander TIE p.e. with 300 samples per second 10 times the following “definite length arbitrary block response data” with corresponding time stamps and IDs are emitted:
#3124 [=following 124 bytes with 2 * int16 and 30 * reals] with the same formats.

Related commands [:SENS]:DATA:EVEN:NUMB? on page R-34
[:SENS]:DATA:EVEN:NUMB?

[:SENSe]:DATA:EVENt:NUMBer? supplies the number of entries available in the event FIFO.

Parameter None

Related commands [:SENS]:DATA:EVEN? on page R-31

Codes for the event memory

Note: The alarm alternation events are collected into bit fields (32 bits) where each individual alarm can be found at a specified bit position. A logical “1” at the respective bit position indicates an active alarm, and a logical “0” an inactive alarm. For a description of these bit fields, see: Alarm bit field “CSTatus”/“HSTatus” on page R-35.

<table>
<thead>
<tr>
<th>Name</th>
<th>Response code</th>
<th>Response type</th>
<th>Event description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEEvent</td>
<td>0</td>
<td>count = 0</td>
<td>No event available</td>
</tr>
<tr>
<td>OVERflow</td>
<td>1</td>
<td>count = 0</td>
<td>Overflow of internal event memory</td>
</tr>
<tr>
<td>Time stamp</td>
<td>10</td>
<td>real (NR3)</td>
<td>Time stamp of events in milliseconds since 1970/1/1</td>
</tr>
<tr>
<td>AEVent:CST</td>
<td>1000</td>
<td>boolean (NR1)</td>
<td>Event in the signal alarm bit field (see also Alarm bit field “CSTatus”/“HSTatus” on page R-35)</td>
</tr>
<tr>
<td>CVALue:JITter:POSiTe:PEAK</td>
<td>1050</td>
<td>real (NR3)</td>
<td>Current positive peak jitter value (UI).</td>
</tr>
<tr>
<td>CVALue:JITter:NEGaTive:PEAK</td>
<td>1051</td>
<td>real (NR3)</td>
<td>Current negative peak jitter value (UI).</td>
</tr>
<tr>
<td>CVALue:JITter:PPEak</td>
<td>1052</td>
<td>real (NR3)</td>
<td>Current peak to peak jitter value (UI).</td>
</tr>
<tr>
<td>CVALue:WANDer:TIE</td>
<td>1100</td>
<td>real (NR3)</td>
<td>Current wander TIE value in seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Only valid if [:SENS]:MODE = WAND.</td>
</tr>
<tr>
<td>SVALue:WANDer:TIE</td>
<td>1101</td>
<td>“definite length arbitrary block response data”, beginning with # and followed by the number of digits of the byte count, plus the number of data bytes that follow. See [:SENS]:DATA:EVEN? on page R-31, Example 2</td>
<td>Current wander TIE sample values in seconds; [:SENS]:WAND:SAMP:RATE on page R-49 determines the number of samples per second. The 1 to 300 samples must be polled from the event queue every second using [:SENS]:DATA:EVEN? <number>; otherwise overflow will occur. This requires firmware release 7.0 or later and Jitter options 90.88 and Wander 90.69. Only valid if [:SENS]:MODE = WAND.</td>
</tr>
</tbody>
</table>

Table R-1 General event IDs for the event memory
Alarm bit field “CSTatus”/“HSTatus”

<table>
<thead>
<tr>
<th>Bit position</th>
<th>Alarm name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (LSB)</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>LTI (loss of timing information) jitter. PLL unlocked</td>
</tr>
<tr>
<td>2</td>
<td>LTI (loss of timing information) wander. PLL unlocked</td>
</tr>
<tr>
<td>3</td>
<td>Jitter measurement positive overflow</td>
</tr>
<tr>
<td>4</td>
<td>Jitter measurement negative overflow</td>
</tr>
<tr>
<td>5</td>
<td>Power failed</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Table R-2 Alarm field “CSTatus”

[:SENS]:FILT:HPAS:FREQ

[:SENSe]:FILTer:HPASs:FREQuency <frequency> determines the frequency of the high-pass weighting filters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>numeric</td>
<td></td>
<td>10</td>
<td>5000</td>
</tr>
</tbody>
</table>

Dependencies None

Comments All values in Hz. IEEE 488.2 suffix units (HZ | KHZ) are supported.

Note: If the high-pass weighting filter is set to 10 Hz and jitter range is set to 2 UI, the effective high-pass weighting filter is 80 Hz.

Example :FILT:HPAS:FREQ 5 KHZ activates the 5000 Hz filter.

Related commands None

[:SENS]:FILT:HPAS:FREQ?

provides the current frequency setting of the high-pass weighting filters.

Example :FILT:HPAS:FREQ?

Response: 12000 if the 12 kHz filter is selected.
[:SENS]:FILT:LED1[:STAT]

[:SENSe]:FILTER:LED1[:STATe] <state> switches the VXI module front panel FILTER 1 LED on or off.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>state</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Dependencies
Only available for the VXI STM-16 Jitter Module.
Note: The state of the LED is freely programmable and does not correspond directly to any setting of the high-pass or low-pass filters.

Comments
ON | 1: LED switched on
OFF | 0: LED switched off

Example
:FILT:LED1 ON switches FILTER 1 LED on.

Related commands
[:SENS]:FILT:LED2[:STAT] on page R-36
[:SENS]:FILT:LED3[:STAT] on page R-37

[:SENS]:FILT:LED1[:STAT]?

This query provides the status of the FILTER 1 LED.

Example
:FILT:LED1?
Response: 1 if the LED is switched on.

[:SENS]:FILT:LED2[:STAT]

[:SENSe]:FILTER:LED2[:STATe] <state> switches the VXI module front panel FILTER 2 LED on or off.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>state</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Dependencies
Only available for the VXI STM-16 Jitter Module.
Note: The state of the LED is freely programmable and does not correspond directly to any setting of the high-pass or low-pass filters.

Comments
ON | 1: LED switched on
OFF | 0: LED switched off

Example
:FILT:LED2 ON switches FILTER 2 LED on.

Related commands
[:SENS]:FILT:LED1[:STAT] on page R-36
[:SENS]:FILT:LED3[:STAT] on page R-37
[SENSe]:FILT:LED2[:STAT]?

This query provides the status of the FILTER 2 LED.

Example

:FILT:LED2?
Response: 1 if LED is switched on.

[SENSe]:FILT:LED3[:STAT]

[:SENSe]:FILTer:LED3[:STATe] <state> switches the VXI module front panel FILTER 3 LED on or off.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Dependencies

Only available for the VXI STM-16 Jitter Module.
Note: The state of the LED is freely programmable and does not correspond directly to any setting of the high-pass or low-pass filters.

Comments

ON | 1: LED switched on
OFF | 0: LED switched off

Example

:FILT:LED3 ON switches FILTER 3 LED on.

Related commands

[:SENSe]:FILT:LED1[:STAT] on page R-36
[:SENSe]:FILT:LED2[:STAT] on page R-36

[SENSe]:FILT:LED3[:STAT]?

This query provides the status of the FILTER 3 LED.

Example

:FILT:LED3?
Response: 1 if LED is switched on.
[:SENS]:FUNC:OFF

[:SENSe]:FUNCTION:OFF <id>[(, <id>)]* deletes one or more result elements from the list of results to be determined.

Parameter
For the entire list of results, see Result IDs for :SENS:DATA and :SENS:FUNC commands on page R-40.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>string</td>
<td>e.g. “JITT:POS:PEAK:MAX” for maximum positive peak jitter value</td>
<td>none</td>
</tr>
</tbody>
</table>

Dependencies
None

Example
positive peak jitter value is not to be determined.

Related commands
[:SENS]:DATA:FIN? on page R-30
[:SENS]:FUNC[:ON] on page R-39
[:SENS]:FUNC:OFF:ALL on page R-38

[:SENS]:FUNC:OFF:ALL

[:SENSe]:FUNCTION:OFF:ALL deletes all result elements from the list of results to be determined.

Parameter
None

Dependencies
None

Comments
There is no query for this command.

Example
:FUNC:OFF:ALL deletes the entire list.

Related commands
[:SENS]:DATA:FIN? on page R-30
[:SENS]:FUNC[:ON] on page R-39
[:SENS]:FUNC:OFF on page R-38
[:SENS]:FUNC[:ON]

[:SENSe]:FUNCtion[:ON] <id>[, <id>]* specifies the list of results to be determined.

Parameter
For the entire list of results, see Result IDs for :SENS:DATA and :SENS:FUNC commands on page R-40.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>string</td>
<td>e.g. "JITT:PPE:MAX" for maximum peak-peak jitter value</td>
<td>no result selected</td>
</tr>
</tbody>
</table>

Dependencies
Only results previously activated with this command can be read by [:SENS]:DATA:FIN? or [:SENS]:DATA:ACT? (except results taken continuously).

Comments
The list of results to be determined can be very long (parameters separated by a blank). The complete list does not have to be specified in a single command; several successive commands can be used. The results can then be read with [:SENS]:DATA:FIN? on page R-30 or [:SENS]:DATA:ACT? on page R-29.

Example
:FUNC "JITT:NEG:PEAK:MAX", "JITT:POS:PEAK:MAX" positive and negative maximum jitter values are to be determined.

Related commands
[:SENS]:DATA:FIN? on page R-30
[:SENS]:DATA:ACT? on page R-29
[:SENS]:FUNC:OFF on page R-38
[:SENS]:FUNC:OFF:ALL on page R-38

[:SENS]:FUNC[:ON]?

[:SENSe]:FUNCtion[:ON]? provides the list of all interval end results that are currently selected.

Example
:FUNC?
Result IDs for [:SENS:DATA] and [:SENS:FUNC] commands

The result IDs listed below are used to identify results requested for the following commands:
- [:SENS:FUNC:ON] on page R-39
- [:SENS:FUNC:OFF] on page R-38
- [:SENS:DATA:FIN?] on page R-30
- [:SENS:DATA:ACT?] on page R-29

Note: The ID strings listed below show the ID names in a long form. This simplifies understanding of the command syntax. The device only accepts SCPI short form upper case (capital letter) commands to speed up the response time of the device (e.g. “CSTATUS” is not accepted, use “CST” instead). The SCPI short form is indicated by the capital letters in the commands below.

<table>
<thead>
<tr>
<th>ID string</th>
<th>Response code</th>
<th>Response type</th>
<th>Response description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIMe</td>
<td>20</td>
<td>count¹</td>
<td>Actual time of day in milliseconds since 1/1/1970</td>
<td>ms</td>
</tr>
<tr>
<td>ETIMe</td>
<td>21</td>
<td>count</td>
<td>Milliseconds since measurement start</td>
<td>ms</td>
</tr>
<tr>
<td>STIMe</td>
<td>22</td>
<td>count</td>
<td>Starting time of measurement in milliseconds since 1/1/1970</td>
<td>ms</td>
</tr>
<tr>
<td>CSTatus</td>
<td>40</td>
<td>bit field¹</td>
<td>Current status of the signal as a bit field (Alarm bit field “CSTatus”/“HSTatus” on page R-35)</td>
<td>none</td>
</tr>
<tr>
<td>HSTatus</td>
<td>45</td>
<td>bit field</td>
<td>History status of the signal as a bit field (Alarm bit field “CSTatus”/“HSTatus” on page R-35). This result provides all the alarms which were detected since the start of the last measurement.</td>
<td>none</td>
</tr>
</tbody>
</table>

¹ These results are taken continuously and are not available using the [:SENS:DATA:FIN?] command.

Table R-3 Result IDs for general results
Jitter STM-16 Module

[:SENS]:FUNC[:ON]?

SENSE subsystem R-41

<table>
<thead>
<tr>
<th>ID string</th>
<th>Response code</th>
<th>Response type</th>
<th>Response description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>JITTER:POSitive:PEAK</td>
<td>50</td>
<td>count¹ (NR3)</td>
<td>Current positive peak jitter value. The value is set to a negative value if there is a range overflow.</td>
<td>UI (unit interval)</td>
</tr>
<tr>
<td>JITTER:POSitive:PEAK:MAXimum</td>
<td>51</td>
<td>count² (NR3)</td>
<td>Maximum positive jitter value during the current measurement. The value is set to a negative value if there is a range overflow.</td>
<td>UI (unit interval)</td>
</tr>
<tr>
<td>JITTER:NEGative:PEAK</td>
<td>52</td>
<td>count¹ (NR3)</td>
<td>Current negative peak jitter value. The value is set to a negative value if there is a range overflow.</td>
<td>UI (unit interval)</td>
</tr>
<tr>
<td>JITTER:NEGative:PEAK:MAXimum</td>
<td>53</td>
<td>count² (NR3)</td>
<td>Maximum negative jitter value during the current measurement. The value is set to a negative value if there is a range overflow.</td>
<td>UI (unit interval)</td>
</tr>
<tr>
<td>JITTER:PEak</td>
<td>54</td>
<td>count¹ (NR3)</td>
<td>Current peak to peak jitter value. The value is set to a negative value if there is a range overflow.</td>
<td>UI (unit interval)</td>
</tr>
<tr>
<td>JITTER:PEak:MAXimum</td>
<td>55</td>
<td>count² (NR3)</td>
<td>Maximum peak to peak jitter value during the current measurement. The value is set to a negative value if there is a range overflow.</td>
<td>UI (unit interval)</td>
</tr>
<tr>
<td>JITTER:POSitive:PHIT</td>
<td>56</td>
<td>count²-³ (NR3)</td>
<td>Number of transgressions (phase hits) of the lower limit set by [:SENS]:JITT:THR:[UPP] on page R-45.</td>
<td>UI (unit interval)</td>
</tr>
<tr>
<td>JITTER:NEGative:PHIT</td>
<td>57</td>
<td>count²-³ (NR3)</td>
<td>Number of transgressions (phase hits) of the lower limit set by [:SENS]:JITT:THR:[LOW] on page R-45.</td>
<td>UI (unit interval)</td>
</tr>
<tr>
<td>JITTER:RMS</td>
<td>58</td>
<td>count¹ (NR3)</td>
<td>Current jitter RMS value. The value is set to a negative value if there is a range overflow. [:SENS]:JITT:THR:[UPP] on page R-45 = Integration time The alarms “Jitter measurement positive/negative overflow”, “LTI jitter” and “LOS” of Alarm bit field “CSTatus”/“HSTatus” on page R-35 are only enabled if also the result ID “JITT:PPE”, or “JITT:POS/NEG:PEAK” is activated.</td>
<td>UI (unit interval)</td>
</tr>
</tbody>
</table>

1. These results are taken continuously and are not available using the [:SENS]:DATA:FIN? command.
2. A measurement must be initiated for valid results.
3. Note that the max. counter frequency for phase hit counting is limited. See jitter STM16 module specification for more details.

Table R-4 Result IDs for jitter results
[:SENS]:JITT:FREQ

[:SENSe]:JITTer:FREquency <value> sets the jitter measurement frequency of the receiver.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>numeric</td>
<td>10 - 20000000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Dependencies

Command requires firmware release 7.0 or later and Jitter RxTx O.172 STM-16 option 90.88.

:SOUR:JITT:FREQ on page R-24 must have the same frequency (this is set automatically) but < 10 Hz is not possible.

Only valid if [:SENS]:JITT:MODE = SEL.

Comments

All values in Hz.
IEEE 488.2 suffix units (HZ | KHZ | MHZ) are supported.

Example

:JITT:FREQ 2 KHZ sets the jitter measurement frequency to 2000 Hz.

Related commands

:SOUR:JITT:FREQ on page R-24;
[:SENS]:JITT:MODE on page R-43

[:SENS]:JITT:FREQ?

provides the current setting of the jitter measurement frequency.

Example

:JITT:FREQ?
Response: 1000 for 1000 Hz
[:SENSe]:JITTer:MODE <mode> sets the jitter measurement mode of the receiver.

Parameter	Name	Type	Range	Default
 | mode | discrete | BROadband | SELective | BRO |

Dependencies: Command requires firmware release 7.0 or later and SEL requires Jitter TxRx O.172 STM-16 option 90.88.

Comments:
- BROadband: Broadband measurement
- SELective: Selective measurement used for JTF (jitter transfer function)

Example:
- [:SENSe]:JITTer:MODE SEL sets selective jitter measurement mode.

Related commands:
- [:SENSe]:JITTer:FREQ on page R-42
- :SOUR:JITTer:FREQ on page R-27

[:SENSe]:JITTer:RANGe[:UPPer] <range> determines the peak to peak jitter measurement range.

Parameter	Name	Type	Range	Default
 | range | numeric | 2 | 32 | 2 |

Comments:
All values in UI (Unit Interval).
A range overflow is indicated in the Alarm bit field “CSTatus”/“HSTatus” on page R-35.

Example:
- [:SENSe]:JITTer:RANGe 32 sets range to 32UI.

Related commands: None

[:SENSe]:JITTer:RANGe[:UPPer]?

provides the current setting of the jitter measurement range.

Example:
- [:SENSe]:JITTer:RANGe?
 Response: 32
[:SENS]:JITT:RMS:INT:PER

[:SENS]:JITTer:RMS:INTegration:PERiod <time> determines the RMS jitter measurement integration time.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>numeric</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Dependencies
Command requires firmware release 7.0 or later and STM-16 O.172 90.88.
In Start/Stop measurement mode, the measurement time [:SENS]:SWE:TIME must be set to a value greater than the RMS integration time.

Comments
All values in seconds.
RMS jitter values are measured only if the corresponding result has been selected (:SENS:FUNC:ON "JITT:RMS").

Example
:JITT:RMS:INT:PER 5 sets range to 5 s.

Related commands
[:SENS]:DATA:ACT? on page R-29
[:SENS]:FUNC[:ON] on page R-39 with ID-string "JITT:RMS"
[:SENS]:SWE:TIME on page R-47

[:SENS]:JITT:RMS:INT:PER?

provides the current setting of the RMS jitter measurement integration time.

Example
:JITT:RMS:INT:PER?
Response: 5
[:SENS]:JITT:THR[:UPP]

[:SENSe]:JITTer:THReshold[:UPP]er <range> determines the upper phase hit threshold.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>numeric</td>
<td>0.1 - 16.0 [1.0]</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Dependencies
If [:SENS]:JITT:FREQ = 2 the maximum value is limited to 1.0.

Comments
All values in UI (Unit Interval).
This command sets the positive limit for phase hits.
Phase hits are measured only if the corresponding result has been selected (:SENS:FUNC:ON "JITT:POS:PHIT").
A phase hit is counted whenever the positive jitter actually measured exceeds the limit set by this command.

Example
:JITT:THR:UPP 1.5 sets threshold to 1.5 UI.

Related commands
[:SENS]:JITT:THR:LOW on page R-45
[:SENS]:JITT:FREQ on page R-42

[:SENS]:JITT:THR[:UPP]?

provides the current setting of the upper phase hit threshold.

Example
:JITT:THR:UPP?
Response: 0.25

[:SENS]:JITT:THR:LOW

[:SENSe]:JITTer:THReshold:LOWer <range> determines the lower phase hit threshold.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>numeric</td>
<td>0.1 - 16.0 [1.0]</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Dependencies
If [:SENS]:JITT:FREQ = 2 the maximum value is limited to 1.0.

Comments
All values in UI (Unit Interval).
This command sets the negative limit for phase hits.
Phase hits are measured only if the corresponding result has been selected (:SENS:FUNC:ON "JITT:NEG:PHIT").
A phase hit is counted whenever the negative jitter actually measured exceeds the limit set by this command.

Example
:JITT:THR:LOW 1.5 sets threshold to 1.5 UI.

Related commands
[:SENS]:JITT:THR[:UPP] on page R-45
[:SENS]:JITT:FREQ on page R-42
[:SENS]:JITT:THR:LOW?

provides the current setting of the lower phase hit threshold.

Example

:JITT:THR:LOW?
Response: 0.25

[:SENS]:MODE

[:SENSe]:MODE <mode> determines the receiver measurement mode.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>discrete</td>
<td>JITT</td>
<td>WANDer</td>
<td>JITT</td>
</tr>
</tbody>
</table>

Dependencies

For wander measurements, a reference clock on input port [54] and option 90.69 or (for O.172) 90.88 and 90.89 are required.

Comments

The corresponding results (jitter or wander) can only be valid if this parameter is properly set.

The reference frequency of wander measurements is set by [:SENS]:WAND:RCL[:CLOC] on page R-48.

Example

:MODE JITT activates jitter mode.

Related commands

[:SENS]:WAND:RCL[:CLOC] on page R-48
[:SENS]:DATA:EVEN? on page R-31
[:SENS]:DATA:EVEN:NUMB? on page R-34
[:SENS]:JITT:FREQ on page R-42

[:SENS]:MODE?

provides the current setting of the receiver measurement mode.

Example

:MODE?
Response: JITT
[:SENS]:SWE

[:SENSe]:SWEep commands determine the type and duration of the measurement to be performed. Measurements are started using the TRIGGER subsystem on page R-19 ff.

[:SENS]:SWE:TIME

[:SENSe]:SWEep:TIME <duration><suffix> determines the duration of a measurement.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>numeric</td>
<td>1 - 99</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>suffix</td>
<td>discrete</td>
<td>[s]</td>
<td>min</td>
<td>hr</td>
</tr>
</tbody>
</table>

Dependencies None

Comments
<suffix> = s seconds (default)
<suffix> = min minutes
<suffix> = hr hours
<suffix> = d days

Measurement intervals can range from 1 second to 99 days.

Example
:SWE:TIME 1 d measurement interval of 1 day

Related commands TRIGGER subsystem on page R-19 ff.

[:SENS]:SWE:TIME?

[:SENSe]:SWEep:TIME? provides the current setting of the measurement duration in seconds.

Example
:SWE:TIME?
Response: 180
180 seconds measurement interval duration (= 3 minutes).
[SENS]:WAND:RCL[:CLOC]

[SENS]:WANDer:RClock[:CLOC] <frequency> determines the frequency of the wander reference clock that must be connected to port [54].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frequency</td>
<td>numeric</td>
<td>1544000</td>
<td>2048000</td>
</tr>
</tbody>
</table>

Dependencies

Only valid if [:SENS]:MODE = WAND.

The last optional node :CLOCk of [:SENS]:WANDer:RClock[:CLOCk] requires firmware release 7.0 or later.

Comments

All values in Hz. IEEE 488.2 suffix units (HZ | KHZ | MAHZ | MHZ) are supported.

Example

:WAND:RCL 10 MHZ sets reference clock to 10 MHz.

Related commands

[:SENS]:MODE on page R-46

[SENS]:WAND:RCL[:CLOC]?

provides the current setting of the wander reference clock frequency.

Example

:WAND:RCL?

Response: 10000000 if set to 10 MHz.
[:SENS]:WAND:SAMP:RATE

[:SENSe]:WANDer:SAMPLE:RATE <rate> determines the wander measurement sample rate.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>numeric</td>
<td></td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>

Dependencies
Command requires firmware release 7.0 or later and Wander O.172 option 90.89 for 30 | 60 | 300.
Only valid if [:SENS]:MODE = WAND.

Comments
Samples per second | Low pass filter / Hz
1 | 0.1
30 | 10
60 | 20
300 | 100

Example
:WAND:SAMP:RATE 30 sets sample rate to 30 samples per second.

Related commands
[:SENS]:DATA:EVEN? on page R-31
[:SENS]:FUNC[:ON] on page R-39

[:SENS]:WAND:SAMP:RATE?

provides the current setting of the wander measurement sample rate.

Example
:WAND:SAMP:RATE?
Response: 30 if set to 30 samples per second.
Notes: