ANT-20SE Advanced Network Tester

Technische Daten

Softwareversion 7.20

Wenn Sie Fragen haben, wenden Sie sich bitte an die zuständige Wavetek Wandel Goltermann-Vertriebsgesellschaft.

Copyrights

Dieses Produkt oder Teile davon basieren auf Empfehlungen und/oder Standards des Standardisierungssektors der Internationalen Fernmeldeunion - ITU-T und/oder des Europäischen Instituts für Telekommunikationsnormen - ETSI. Diese Empfehlungen und Standards unterliegen Schutzrechten dieser Organisationen. Ohne schriftliche Zustimmung von ITU-T und/oder ETSI ist es nicht gestattet, ITU-T-Empfehlungen oder ETSI-Standards ganz oder in Teilen zu kopieren und/oder Dritten zugänglich zu machen.

Wavetek Wandel Goltermann Eningen GmbH & Co. Mühleweg 5, 72800 Eningen u. A. © 2000

Autor: MDD/TD

Ausgabe: Juli 2000 (V 7.20)

Frühere Ausgabe: April 2000 (V 7.1)

Änderungen vorbehalten. Es gelten unsere normalen Garantie- und Lieferbedingungen.

Printed in Germany

Inhalt

Technische Daten ANT-20SE

Grundgerät SDH- und SONET-Version

Optionen:

- 1 Extended Overhead Analysis STM-1-Mappings STS-1-Mappings
- 2 PDH MUX/DEMUX
- 3 M13 MUX/DEMUX
- 4 Optische Schnittstellen
- 5 O.172 Jitter/Wander
- 6 ATM-Modul ATM-Mappings
- 7 Broadband Analyzer/Generator
- 8 Concatenated Mappings OC-12c, STM-4c/OC-48c, STM-16c

ANT-20SE Advanced Network Tester

Grundgerät

SDH- und SONET-Version

Softwareversion 7.20

Technische Daten

Inhalt

Technische Daten Grundgerät, SDH- und SONET-Version

1	Sende	teil	TD-2
	1.1	Digitalsignal-Ausgänge	TD-2
	1.1.1	Signalausgang "LINE" [15], elektrisch	TD-2
	1.1.2	Signalausgang "LINE/AUXILIARY" [13], elektrisch	TD-3
	1.2	Takterzeugung und Bitraten	TD-3
	1.2.1	Interne Takterzeugung	TD-3
	1.2.2	Synchronisation auf externe Signale	TD-4
2	Empfa	ngsteil	TD-5
	2.1	Digitalsignal-Eingänge	TD-5
	2.1.1	Signaleingang "LINE" [14], elektrisch	TD-5
	2.1.2	Signaleingang "LINE/AUXILIARY" [12], elektrisch	TD-7
	2.1.3	Taktrückgewinnung	TD-8
3	DS1- u	ınd DS3-Signale	TD-9
	3.1	Fehlereinblendung und Alarmerzeugung (TX)	TD-10
	3.1.1	Fehlereinblendung (Anomalien)	TD-10
	3.1.2	Alarmerzeugung (Defekte)	TD-11
	3.2	Fehlermessungen und Alarmerkennung (RX)	TD-12
	3.2.1	Fehlermessungen (Anomalien)	TD-12
	3.2.2	Alarmerkennung (Defekte)	TD-13
	3.3	Drop&Insert/Through Mode (Durchgangsbetrieb)	TD-14
	3.3.1	Funktionen	TD-14
	3.3.2	Takterzeugung	TD-15
	3.3.3	Fehlereinblendung (Anomalien)	TD-15
	3.3.4	Alarmerzeugung (Defekte)	TD-15
	3.3.5	Messungen	TD-15
4	E1- bis	s E4-Signale	TD-16
	4.1	Fehlereinblendung und Alarmerzeugung (TX)	TD-17
	4.1.1	Fehlereinblendung (Anomalien)	TD-17
	4.1.2	Alarmerzeugung (Defekte)	TD-17

i

	4.2	Fehlermessungen und Alarmerkennung (RX)	10-10
	4.2.1	Fehlermessungen (Anomalien)	TD-18
	4.2.2	Alarmerkennung (Defekte)	TD-19
	4.3	Drop&Insert/Through Mode (Durchgangsbetrieb)	TD-20
	4.3.1	Funktionen	TD-20
	4.3.2	Takterzeugung	TD-21
	4.3.3	Fehlereinblendung (Anomalien)	TD-21
	4.3.4	Alarmerzeugung (Defekte)	TD-21
	4.3.5	Messungen	TD-21
5	Meßarte	en	TD-22
	5.1	Auswertung nach ANSI/BELL	TD-22
	5.2	Auswertung nach ITU-T G.821	TD-22
	5.3	Auswertung nach ITU-T G.826	TD-23
	5.4	Auswertung nach ITU-T G.828	TD-23
	5.5	Auswertung nach ITU-T G.829	TD-24
	5.6	Auswertung nach ITU-T M.2100	TD-25
	5.7	Auswertung nach ITU-T M.2101	TD-26
_	Automo	tische Meßabläufe	TD 07
6	Automa	itische Meisabiaule	I D-21
ь	6.1	Autokonfiguration	
6			TD-27
0	6.1	Autokonfiguration	TD-27
0	6.1 6.1.1	Autokonfiguration	TD-27 TD-27 TD-27
6	6.1 6.1.1 6.1.2	Autokonfiguration	TD-27 TD-27 TD-27
0	6.1 6.1.1 6.1.2 6.1.3	Autokonfiguration	TD-27 TD-27 TD-27 TD-28
•	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1	Autokonfiguration	TD-27TD-27TD-27TD-28TD-28
•	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2	Autokonfiguration Check Interface Check Mapping Check Payload PDH-Signale ATM-Signale	TD-27TD-27TD-28TD-28TD-28
0	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2 6.1.4	Autokonfiguration Check Interface. Check Mapping. Check Payload PDH-Signale ATM-Signale Struktur und Ergebnisse	TD-27TD-27TD-28TD-28TD-28TD-28
•	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2 6.1.4 6.2	Autokonfiguration Check Interface. Check Mapping. Check Payload PDH-Signale. ATM-Signale. Struktur und Ergebnisse Automatische "Scan"-Funktion	TD-27TD-27TD-28TD-28TD-28TD-28TD-30
•	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2 6.1.4 6.2 6.3	Autokonfiguration Check Interface Check Mapping Check Payload PDH-Signale ATM-Signale Struktur und Ergebnisse Automatische "Scan"-Funktion Automatische "Search"-Funktion	TD-27TD-27TD-28TD-28TD-28TD-30TD-31
7	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2 6.1.4 6.2 6.3 6.4 6.5	Autokonfiguration Check Interface. Check Mapping. Check Payload PDH-Signale. ATM-Signale. Struktur und Ergebnisse Automatische "Scan"-Funktion Automatische "Trouble Scan"-Funktion	TD-27TD-27TD-28TD-28TD-28TD-30TD-31TD-32
	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2 6.1.4 6.2 6.3 6.4 6.5	Autokonfiguration Check Interface. Check Mapping. Check Payload PDH-Signale. ATM-Signale. Struktur und Ergebnisse Automatische "Scan"-Funktion Automatische "Trouble Scan"-Funktion Automatische Laufzeit-Messung.	TD-27TD-27TD-28TD-28TD-28TD-30TD-31TD-34
	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2 6.1.4 6.2 6.3 6.4 6.5	Autokonfiguration Check Interface. Check Mapping. Check Payload PDH-Signale. ATM-Signale. Struktur und Ergebnisse. Automatische "Scan"-Funktion Automatische "Search"-Funktion Automatische "Trouble Scan"-Funktion Automatische Laufzeit-Messung.	TD-27TD-28TD-28TD-28TD-29TD-30TD-31TD-34TD-34
	6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2 6.1.4 6.2 6.3 6.4 6.5 Zusätzli	Autokonfiguration Check Interface. Check Mapping. Check Payload PDH-Signale. ATM-Signale. Struktur und Ergebnisse Automatische "Scan"-Funktion Automatische "Search"-Funktion Automatische "Trouble Scan"-Funktion Automatische Laufzeit-Messung. iche Ein- und Ausgänge DCC/ECC [21].	TD-27TD-28TD-28TD-28TD-29TD-30TD-31TD-34TD-34TD-36TD-36

8	Eingeba	auter Bedien- und Steuerrechner (PC)
9	Allgeme	eine KenndatenTD-41
	9.1	StromversorgungTD-41
	9.2	Klimatische und
		mechanische Umgebungsbedingungen
	9.2.1	Klimatische und mechanische DatenTD-42
	9.3	EG-Konformitätserklärung/CE-KennzeichnungTD-42
	9.3.1	EMV-StöraussendungTD-42
	9.3.2	EMV-StörfestigkeitTD-43
	9.4	SchallemissionTD-44
	9.5	Kalibrierung/WartungTD-44
	9.6	Abmessungen/Gewicht
	9.7	Bestellangaben
	9.7.1	Grundgerät ANT-20SE
	9.7.2	Optionen
	9.7.3	FernsteuerungTD-48
	9.7.4	Fernbedienung
	9.7.5	Test-AutomatisierungTD-49
	9.7.6	KalibrierungTD-49
	9.7.7	ZubehörTD-49
	9.7.8	Nachrüstung von Optionen
	9.7.9	Hinweis für Benutzer des ANT-20SETD-50

Notizen:

Technische Daten Grundgerät, SDH- und SONET-Version

Die Zahlen in eckigen Klammern [...] entsprechen denen, die am Gerät aufgeführt sind.

Kalibrierte Kenndaten für die SDH-Version 3060/01 des ANT-20SE sind mit *** markiert. Kalibrierte Kenndaten für die SONET-Version 3060/02 des ANT-20SE sind mit ** markiert.

1 Sendeteil

1.1 Digitalsignal-Ausgänge

1.1.1 Signalausgang "LINE" [15], elektrisch

Anschluß	symmetrisch (koaxial)
Buchse	UNI 9 (Versacon®)
Innenwiderstand	75 Ω
Max. zulässiger Scheitelwert der Fremdspannung	+5 V

Schnitt- stelle ³	Bitrate (Mbit/s)	Code	Ausgangsspannung	Toleranz der Ausgangsspg.	Reflexions- faktor
STS-3 STM-1	155,520 *** **	СМІ	± 0,5 V	± 0,05 V	≥ 15 dB 100 kHz bis 240 MHz
STM-0	51,840 **	HDB3	± 1,0 V	± 0,1 V	≥ 18 dB
STS-1		B3ZS	DS High: ± 0,909 V		50 kHz bis 52 MHz
DS3	44,736 ²	B3ZS	DSX3: High + Sim 450 feet 728A cable ⁴		
			DS Low: High -13,8 dB ⁴		
DS2	6,312 ²	B8ZS	± 2 V ⁴	± 0,2 V	
DS1	1,544 ²	B8ZS, AMI	± 2,37 V	± 0,237 V	
E4	139,264 ¹	СМІ	± 0,5 V	± 0,05 V	≥ 15 dB 100 kHz bis 240 MHz
E3	34,368 ¹ ***	HDB3	± 1,0 V	± 0,1 V	≥ 18 dB
E2	8,448 ¹	HDB3	± 2,37 V	± 0,237 V	50 kHz bis 52 MHz
E1	2,048 ¹	HDB3			

^{1 3035/02:} Option 3035/90.33 erforderlich

Tabelle TD-1 Kenngrößen des Signalausgangs "LINE" [15], elektrisch

^{2 3035/01:} Option 3035/90.34 erforderlich

³ abhängig von der ANT-20SE-Version und den eingebauten Optionen

⁴ erst ab Serie H

1.1.2 Signalausgang "LINE/AUXILIARY" [13], elektrisch

Anschluß symme	etrisch
Buchse: 3035/01 Ler Buchse: 3035/02 Ba	
Innenwiderstand 2,048 Mbit/s	
Max. zulässiger Scheitelwert der Fremdspannung	± 5 V

Bitrate (Mbit/s)	Code	Ausgangs- spannung	Toleranz der Ausgangsspannung	Reflexionsfaktor
2,0481 ***	HDB3	± 3,0 V	± 0,3 V	≥ 18 dB
1,544 ^{2**}	B8ZS, AMI	DSX-1-kompatibel		50 kHz bis 3 MHz

^{1 3035/02:} Option 3035/90.33 erforderlich

Tabelle TD-2 Kenngrößen des Signalausgangs "LINE/AUXILIARY" [13], elektrisch

1.2 Takterzeugung und Bitraten

1.2.1 Interne Takterzeugung

Bitratenbereich	1,544 Mbit/s bis 155,52 Mbit/s
Frequenzabweichung ***, **	± 2 ppm ±1 ppm/a
Einstellbare Verstimmung	± 500 ppm
Kleinste Einstellschrittweite	0,001 ppm (1 ppb)
Eigenjitter (Takt)	0,010 UI

^{2 3035/01:} Option 3035/90.34 erforderlich

1.2.2 Synchronisation auf externe Signale

Abgeleitet vom Empfangstakt

Die Sendebitrate wird vom Empfangstakt abgeleitet, der Jitter des ankommenden Signals wird unterdrückt.

Einstellbare Verstimmung auf der Sendeseite $\dots \dots \pm 500 \text{ ppm}$

Grenzfrequenz, ab der der Jitter unterdrückt wird...... ca. 100 Hz

Max. zulässige Verstimmung des Empfangstakts (des Empfangssignals):

Bei DROP&INSERT-Betrieb (Option 3035/90.20) ist keine TX-Verstimmung möglich!

Abgeleitet vom Referenztakt

- Die Sendebitrate wird abgeleitet vom:
- Referenztakt T3 (2,048 MHz)
- Datensignal 2,048 Mbit/s
- Referenztakt DS1 (1,544 MHz)
- Datensignal 1,544 Mbit/s

Der Jitter des ankommenden Signals wird unterdrückt (siehe Kap. 7.3, Seite TD-37)

Einstellbare Verstimmung, bezogen auf 1,544 MHz oder 2,048 MHz ± 500 ppm
Kleinste Einstellschrittweite 0,001 ppm (1 ppb)
Grenzfrequenz, ab der der Jitter unterdrückt wirdca. 1 Hz
Maximale zulässige Verstimmung des Referenzsignals ≤ 10 ppm

2 Empfangsteil

2.1 Digitalsignal-Eingänge

2.1.1 Signaleingang "LINE" [14], elektrisch

Anschluß unsymmetrisch (koaxial)
Buchse
Innenwiderstand75 Ω
Max. zulässiger Frequenzoffset
Max. Anzahl aufeinanderfolgender Nullen bei Code = AMI
Eingangsspannungsbereiche umschaltbar ***, ** "ITUT-T" ("High")
"PMP" ("Low") CMI
"PMP" ("Low") B3ZS, B8ZS, HDB3, AMI 15 bis 26 dB Dämpfung bezogen auf Nennpegel
Max. zulässiger Scheitelwert der Eingangsspannung \ldots \pm 5 V

Schnittstelle ³	Bitrate (Mbit/s)	Code	Signalentzerrung (adaptiv)	Reflexionsfaktor
STS-3 STM-1	155,520	СМІ	max. 12,7 dB/78 MHz	≥ 15 dB 100 kHz bis 240 MHz
STM-0	51,840	HDB3	max. 12 dB/17 MHz ⁴	≥ 18 dB 50 kHz bis 52 MHz
STS-1		B3ZS		
DS3	44,736 ²	B3ZS		
DS1	1,544 ²	B8ZS, AMI	max. 6 dB/0,772 MHz ⁵	
DS2	6,312 ²	B8ZS	max. 6 dB/3 MHz	≥ 18 dB 100 kHz bis 52 MHz
E4	139,264 ¹	СМІ	max. 12 dB/70 MHz	≥ 15 dB 100 kHz bis 240 MHz
E3	34,368 ¹	HDB3	max. 12 dB/17 MHz	≥ 18 dB
E2	8,448 ¹	HDB3	max. 6 dB/4 MHz	50 kHz bis 52 MHz
E1	2,048 ¹	HDB3	max. 6 dB/1 MHz	

- 1 3035/02: Option 3035/90.33 erforderlich
- 2 3035/01: Option 3035/90.34 erforderlich
- 3 abhängig von der ANT-20SE-Version und den eingebauten Optionen
- 4 adaptiver Signalentzerrer erlaubt ≥ 450 ft-728A-Kabel (DSX3-Pegel)
- 5 adaptiver Signalentzerrer erlaubt ≥ 655 ft-22AWG-Kabel

Tabelle TD-3 Kenngrößen des Signaleingangs "LINE" [14], elektrisch

Jitterverträglichkeit

Gemessen mit PRBS 15 (≤ 8 Mbit/s) und PRBS 23 (> 8 Mbit/s) und bei den Empfangspegeln "ITU-T" und "PMP" mit 20 dB Dämpfung bezogen auf den Nennpegel.

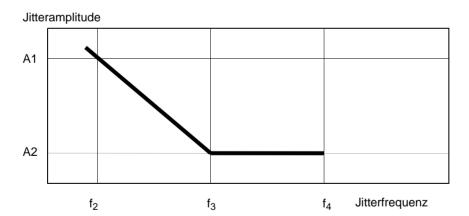


Bild TD-1 Jitteramplitude in Abhängigkeit von der Jitterfrequenz

Bitrate Mbit/s	Code	A1 Ulpp	f ₂ kHz	A2 Ulpp	f ₃ kHz	f ₄ kHz
1,544 ²	B8ZS	5	0,5	0,25	20	200
2,048 ¹	HDB3	10	0,5	0,25	20	200
6,312 ²	B8ZS	10	1,5	0,25	60	600
8,448 ¹	HDB3	10	2	0,25	80	800
34,368 ¹	HDB3	10	6	0,25	240	2000
44,736 ²	B3ZS	10	6	0,25	240	2000
51,840 ¹	B3ZS	10	6	0,25	240	2000
139,264 ¹	СМІ	10	20	0,25	800	3500
155,520	СМІ	10	22	0,25	880	3500

^{1 3035/02:} Option 3035/90.33 erforderlich

Tabelle TD-4 Jitterverträglichkeit des ANT-20SE bei Systembitraten

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

2.1.2 Signaleingang "LINE/AUXILIARY" [12], elektrisch

Anschluß symmetrisch
Buchse: 3035/01 Lemo SA Buchse: 3035/02 Bantam
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Max. zulässiger Frequenzoffset
Max. Anzahl aufeinanderfolgender Nullen bei Code = AMI
Eingangsspannungsbereiche umschaltbar "ITU-T" ("High")
Max. zulässiger Scheitelwert der Eingangsspannung

^{2 3035/01:} Option 3035/90.34 erforderlich

Bitrate (Mbit/s)	Code	Reflexionsfaktor	
2,048 ¹	HDB3	≥ 18 dB	
1,544 ²	B8ZS, AMI	50 kHz bis 3 MHz	
1 3035/02: Option 3035/90.33 erforderlich 2 3035/01: Option 3035/90.34 erforderlich			

Tabelle TD-5 Kenngrößen des Signaleingangs "LINE/AUXILIARY" [12], elektrisch

Jitterverträglichkeit

wie in Tab. TD-4, Seite TD-7

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

2.1.3 Taktrückgewinnung

3 DS1- und DS3-Signale

Einstellbar mit der ANT-20SE-Version 3060/02 oder mit der ANT-20SE-Version 3060/01 und der Option 3035/90.34.

Meßsignale für Bitfehlermessungen.

Signalstruktur für alle Bitraten

- ungerahmtes Testmuster
- gerahmtes Testmuster

Testmuster

Digitalwort	Länge 16 bit
Quasizufallsfolge	S 11 invers, PRBS 15, PRPS 15 invers, PRBS 20, PRBS 23, PRBS 23 invers, QRSS 20 (QRSS 20 mit max. 14 Nullen)
Rahmen	
DS3	M13-Rahmen, C-Parity
DS2	nur ungerahmt
DS1	D4 (SF), ESF (ANSI T1.107)

3.1 Fehlereinblendung und Alarmerzeugung (TX)

3.1.1 Fehlereinblendung (Anomalien)

Fehlereinblendung (Anomalien)	Bitfehler im Testmuster (TSE), Codefehler (nur Einzelfehler)
Auslösearten	Einzelfehler (Single)

Tip: Bei der Auslöseart Fehlerhäufigkeit (Rate) wird einen Bitfehlerrate eingeblendet.

Anomalie	Single	Rate ¹
FE-DS1	ja	2E-3 bis 1E-8
CRC6	ja	2E-3 bis 1E-8
FE-DS3	ja	2E-3 bis 1E-8
P-Parity-DS3	ja	2E-3 bis 1E-8
CP-Parity-DS3	ja	2E-3 bis 1E-8
FEBE-DS3 (REI 45)	ja	2E-3 bis 1E-8
TSE	ja	1E-2 bis 1E-8
BPV	ja	-
1 Mantisse: 1 bis 9 (nur 1 bei TSE), Exponent: -1 bis -8 (Ganzzahlen)		

Tabelle TD-6 Einstellbare Anomalien mit Auslöseart

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

3.1.2 Alarmerzeugung (Defekte)

Defekt	Test Sensor- Funktion	Test Sensor-Schwellen
AIS-DS1, AIS-DS3, IDLE-DS3, FEAC-DS3	Ein/Aus	-
LOF-DS1	Ein/Aus	2/4, 2/5, 2/6 ¹
LOF-DS3	Ein/Aus	2/2, 2/3, 3/3, 3/15, 3/16, 3/17 ¹
YELLOW-DS1, YELLOW-DS3 (RDI)	Ein/Aus	-
1 (siehe Tab. TD-8)		

Tabelle TD-7 Einstellbare Defekte

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

DS1	DS3	Einblendung
2 in 4	-	1. und 4. Ft Bit in jedem zweiten (E)SF invertiert
2 in 5	-	1. und 5. Ft Bit in jedem zweiten (E)SF invertiert
2 in 6	-	1. und 6. Ft Bit in jedem zweiten (E)SF invertiert
-	2 in 2	1. und 2. Fbit in jedem Multiframe invertiert
-	2 in 3	1. und 3. Fbit in jedem Multiframe invertiert
-	3 in 3	1., 2. und 3. Fbit in jedem Multiframe invertiert
-	3 in 15	1., 8. und 15. Fbit in jedem Multiframe invertiert
-	3 in 16	1., 9. und 16. Fbit in jedem Multiframe invertiert
-	3 in 17	1., 9. und 17. Fbit in jedem Multiframe invertiert

Tabelle TD-8 Alarmerzeugung DS1/DS3

3.2 Fehlermessungen und Alarmerkennung (RX)

3.2.1 Fehlermessungen (Anomalien)

Auswertung

Anzeige

der Anomalien über LEDs:

CURRENT LED (rot) leuchtet, während die Anomalie anliegt.

HISTORY LED (gelb) leuchtet, wenn die Anomalie mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Anomaly	LED
FE-DS1, FE-DS3, MFE-DS3	FAS/CRC
CRC6	FAS/CRC
P-DS3, CP-DS3	-
TSE	TSE
BPV	-
DS3-REI	-

Tabelle TD-9 LED-Anzeige der möglichen Anomalien

3.2.2 Alarmerkennung (Defekte)

Auswertung

Alle anliegenden Alarme (Defekte) werden soweit wie möglich parallel ausgewertet und gespeichert. Die Speicherung erfolgt nur während eines gestarteten Meßintervalls

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Defekt	LED
AIS-DS1, AIS-DS3	AIS
LOF-DS3, OOF-DS3 LOF-DS1, OOF-DS1	LOF/LOC
DS1-YELLOW, DS3-YELLOW	RDI(AIS-)/YELLOW
IDLE-DS3, FEAC-DS3	-

Tabelle TD-10 LED-Anzeige der möglichen Defekte

Tip: DS3-AIC wird zur automatischen Geräteeinstellung verwendet und kann nur über die Fernsteuerung ausgelesen werden.

3.3 Drop&Insert/Through Mode (Durchgangsbetrieb)

Option: BN 3035/90.20

3.3.1 Funktionen

Die Option BN 3035/90.20 bietet folgende Funktionen für alle im ANT-20SE enthaltenen PDH-Funktionen.

Drop&Insert

Diese Funktion ist nur in Verbindung mit den folgenden Optionen verfügbar:

PDH MUX/DEMUX-Kette: BN 3035/90.30 bis BN 3035/90.31

M13 MUX/DEMUX-Kette: BN 3035/90.32

- oder -

STM-1-Mappings: BN 3035/90.01 bis BN 3035/90.05
 STS-1-Mappings: BN 3035/90.10 bis BN 3035/90.13

- oder -

Optische Schnittstellen: BN 3035/90.40 bis BN 3035/90.48

BN 3035/90.50 und BN 3035/90.51

Die Eigenschaften und technischen Daten der "Drop&Insert"-Funktion finden Sie in den Beschreibungen der einzelnen Optionen.

Through Mode (Durchgangsbetrieb)

Das empfangene Signal wird zum Sender geschleift (Durchgangsbetrieb).

Der ANT-20SE kann im Durchgangsbetrieb auch als Signalmonitor eingesetzt werden, ohne daß der Signalinhalt beeinflußt wird.

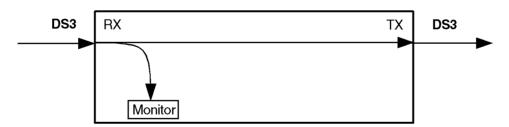


Bild TD-2 Durchgangsbetrieb: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "PDH MUX/DEMUX" und "M13 MUX/DEMUX", BN 3035/90.30 bis BN 3035/90.32 bietet der ANT-20SE Zugang zu den Zubringerkanälen innerhalb der "MUX/DEMUX"-Kette. Dies gilt auch, wenn das PDH-Signal in einem Container übertragen wird.

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

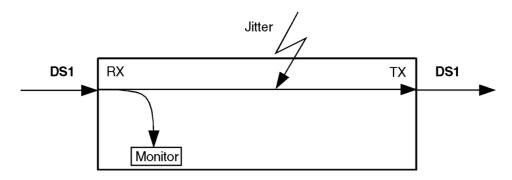


Bild TD-3 Through Mode: Durchgangssignal verjittert

3.3.2 Takterzeugung

Through Mode

Im Through Mode steht die Takterzeugung fest auf "abgeleitet vom Empfangstakt". Eine Verstimmung des Sendesignals ist in dieser Betriebsart nicht zulässig (siehe Kap. 1.2.2, Seite TD-4).

3.3.3 Fehlereinblendung (Anomalien)

Through Mode

3.3.4 Alarmerzeugung (Defekte)

Through Mode

Keine Alarmerzeugung möglich.

3.3.5 Messungen

Bei den Messungen gibt es keine Einschränkungen (siehe Kap. 3.2, Seite TD-12).

4 E1- bis E4-Signale

Einstellbar mit der ANT-20SE-Version 3060/01 oder mit der ANT-20SE-Version 3060/02 und der Option 3035/90.33.

Meßsignale für Bitfehlermessungen.

Signalstruktur für alle Bitraten

- ungerahmtes Testmuster
- gerahmtes Testmuster

Testmuster

Digitalwort Länge 16 Bit
Quasizufallsfolge
Rahmen
E1 (2,048 Mbit/s; G.704/706)
E2 (8,448 Mbit/s; G.742)
E3 (34,368 Mbit/s; G.751)
E4 (139,264 Mbit/s; G.751)

4.1 Fehlereinblendung und Alarmerzeugung (TX)

4.1.1 Fehlereinblendung (Anomalien)

Fehlereinblendung (Anomalien)	Bitfehler im Testmuster (TSE),
	Codefehler (nur Einzelfehler)
Auslösearten	Einzelfehler (Single) oder Fehlerhäufigkeit (Rate)

Tip: Bei der Auslöseart Fehlerhäufigkeit (Rate) wird eine Bitfehlerrate eingeblendet.

Anomalie	Single	Rate ¹
FAS-140, FAS-3, FAS-8, FAS-2	ja	2E-3 bis 1E-8
TSE	ja	1E-2 bis 1E-8
BPV	ja	-
1 Mantisse: 1 bis 9 (nur 1 bei TSE), Exponent: -1 bis -10 (Ganzzahl)		

Tabelle TD-11 Einstellbare Anomalien mit Auslöseart

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

4.1.2 Alarmerzeugung (Defekte)

Defekt	Test Sensor- Funktion	Test Sensor- Schwelle
-	Ein/Aus	M in N
AIS-140, AIS-34, AIS-8, AIS-2	ja	-
LOF-140, LOF-34, LOF-8, LOF-2	ja	M = 1 bis N-1 N = 1 bis 1000
RDI -140, RDI-34, RDI-8, RDI-2	ja	M = 1 bis N-1 N = 1 bis 1000

Tabelle TD-12 Einstellbare Defekte

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

4.2 Fehlermessungen und Alarmerkennung (RX)

4.2.1 Fehlermessungen (Anomalien)

Auswertung

Anzeige

der Anomalien über LEDs:

CURRENT LED (rot) leuchtet, während die Anomalie anliegt.

HISTORY LED (gelb) leuchtet, wenn die Anomalie mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Anomalie	LED	
FAS-140, FAS-34, FAS-8, FAS-2	FAS/CRC	
CRC-4 ¹	FAS/CRC	
E-Bit ¹	-	
TSE	TSE	
BPV	-	
1 Option 3035/90.30 oder 3035/90.31 erforderlich		

Tabelle TD-13 LED-Anzeige der mögliche Anomalien

4.2.2 Alarmerkennung (Defekte)

Auswertung

Alle anliegenden Alarme (Defekte) werden soweit wie möglich parallel ausgewertet und gespeichert. Die Speicherung erfolgt nur während eines gestarteten Meßintervalls

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Defekt	LED
AIS-140, AIS-34, AIS-8, AIS-2, AIS-64k	AIS
LOF-140, LOF-34, LOF-8, LOF-2	LOF/LCD
LSS	LSS
RDI-140, RDI-34, RDI-8, RDI-2	RDI(AIS-)/YELLOW

Tabelle TD-14 LED-Anzeige der möglichen Defekte

4.3 Drop&Insert/Through Mode (Durchgangsbetrieb)

Option: BN 3035/90.20

4.3.1 Funktionen

Die Option BN 3035/90.20 bietet folgende Funktionen für alle im ANT-20SE enthaltenen PDH-Funktionen.

Drop&Insert

Diese Funktion ist nur in Verbindung mit den folgenden Optionen verfügbar:

PDH MUX/DEMUX

M13 MUX/DEMUX: BN 3035/90.30 bis BN 3035/90.32

- oder -

STM-1-Mappings: BN 3035/90.01 bis BN 3035/90.05
 STS-1-Mappings: BN 3035/90.10 bis BN 3035/90.13

- oder -

Optische Schnittstellen: BN 3035/90.40 bis BN 3035/90.48

BN 3035/90.50 und BN 3035/90.51

Die Eigenschaften und technischen Daten der "Drop&Insert"-Funktion finden Sie in den Beschreibungen der einzelnen Optionen.

Through Mode (Durchgangsbetrieb)

Das empfangene Signal wird zum Sender geschleift (Durchgangsbetrieb).

Der ANT-20SE kann im Durchgangsbetrieb auch als Signalmonitor eingesetzt werden, ohne daß der Signalinhalt beeinflußt wird.

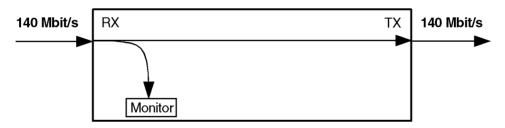


Bild TD-4 Durchgangsbetrieb: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "PDH MUX/DEMUX" und "M13 MUX/DEMUX", BN 3035/90.30 bis BN 3035/90.32 bietet der ANT-20SE Zugang zu den Zubringerkanälen innerhalb der "MUX/DEMUX"-Kette. Dies gilt auch, wenn das PDH-Signal in einem Container übertragen wird.

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

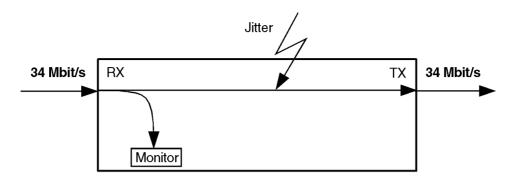


Bild TD-5 Through Mode: Durchgangssignal verjittert

4.3.2 Takterzeugung

Through Mode

Im Through Mode steht die Takterzeugung fest auf "abgeleitet vom Empfangstakt". Eine Verstimmung des Sendesegnals ist in dieser Betriebsart nicht zulässig (siehe Kap. 1.2.2, Seite TD-4).

4.3.3 Fehlereinblendung (Anomalien)

Through Mode

4.3.4 Alarmerzeugung (Defekte)

Through Mode

Keine Alarmerzeugung möglich.

4.3.5 Messungen

Bei den Messungen gibt es keine Einschränkungen (siehe Kap. 4.2, Seite TD-18).

5 Meßarten

5.1 Auswertung nach ANSI/BELL

Auf folgenden Ebenen wird alternativ eine Auswertung durchgeführt:

SONET Section, Line, STS-Path, VT-Path

DS3 Line, PathDS1 Line, Path

Bit

Wenn vorhanden, werden "Near End"- und "Far End"-Analyse gleichzeitig durchgeführt.

Die Auswertung erfolgt nach ES, SES, EFS, SEFS und UAS.

Die Schwellen für SES und UAS sind gemäß GR-253 (Performance Monitoring) bzw. T1.231 eingestellt.

5.2 Auswertung nach ITU-T G.821

Die Auswertung erfolgt nach ES, EFS, SES und UAS; zusätzlich DM (Minuten mit verminderter Qualität).

Außerdem kann der Multiplexfaktor entsprechend älterer G.821-Empfehlung (Annex D) berücksichtigt werden.

G.821 kann an folgenden Ereignissen gemessen werden:

- FAS-Fehler (FAS2, FAS8, FAS34 und FAS140)
- CRC4-Fehler
- EBit-Fehler
- Bitfehler (TSE).

Die Auswertung von Bitfehlern kann durchgeführt werden an:

- ungerahmten Mustern
- · gerahmten Mustern und Bulksignalen
- n x 64 kbit
- Overhead Bytes E1, E2, F1, F2, D1bis D3 und D4 bis D12

Gut-/Schlecht-Bewertung in Abhängigkeit der Allocation von 0,1 bis 100% (Zuteilung der Leitungslänge).

Die SES-Schwelle ist einstellbar.

Bei eingeschalteter G.821-Auswertung kann nicht auf Blockfehlerauswertung umgeschaltet werden, da eine Bitfehlerauswertung erforderlich ist.

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

5.3 Auswertung nach ITU-T G.826

Die Auswertung erfolgt nach EB, BBE, ES, EFS, SES und UAS.

Gut-/Schlecht-Bewertung in Abhängigkeit der Allocation von 0,1 bis 100% (Zuteilung der Leitungslänge).

Die SES- und UAS-Schwellen sind einstellbar.

In-Betrieb-Auswertung (ISM)

Gleichzeitige In-Betrieb-Auswertung für "Nahes Ende" und "Fernes Ende" eines wählbaren Pfades:

Nahes Ende: HP-B3, LP-B3, BIP2, FAS bei 140/34/8 oder 2M, CRC 4, DS3FAS,

DS3-P-Parity, DS3-C-Parity, DS1FAS, D1-CRC6

Fernes Ende: HP-REI, LP-REI, E-Bit bei 2M, DS3-FEBE

Außer-Betrieb-Auswertung (OOS)

Außer-Betrieb-Auswertung mittels Bitfehler im Testmuster (bei PDH und SDH).

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

5.4 Auswertung nach ITU-T G.828

Die Auswertung erfolgt nach ES, EFS, SES, UAS, BBE und SEP.

Gut-/Schlecht-Bewertung in Abhängigkeit der Allocation von 0,1 bis 100% (Zuteilung der Leitungslänge).

Die SES- und UAS-Schwellen sind einstellbar.

G.828 kann an folgenden Ereignissen gemessen werden:

- B1
- B2SUM
- MS-REI
- B3
- HP-REI
- LP-BIP 2/8
- LP-REI
- Bitfehler (TSE)

Die Auswertung von "Near End" und "Far End" erfolgt gleichzeitig, sobald die eingestellte Signalstruktur eine "Far End"-Messung ermöglicht.

Voraussetzung für eine "Far End"-Auswertung: REI muß vorhanden sein.

Die Auswertung von Bitfehlern kann durchgeführt werden an:

- ungerahmten Mustern
- gerahmten Mustern und Bulksignalen
- Overhead Bytes E1, E2, F1, F2, F2L, D1 bis D3 und D4 bis D12 im SOH/POH von SDH-Signalen

Da mit der G.828-Auswertung Blockfehler gemessen werden, kann keine Bitfehlerauswertung eingeschaltet werden.

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

5.5 Auswertung nach ITU-T G.829

Die Auswertung erfolgt nach ES, EFS, SES, UAS und BBE.

Die SES-Schwelle ist einstellbar.

G.829 kann an folgenden Ereignissen gemessen werden:

- B1
- B2SUM
- MS-REI
- Bitfehler (TSE)

Die Auswertung von "Near End" und "Far End" erfolgt gleichzeitig, sobald die eingestellte Signalstruktur eine "Far End"-Messung ermöglicht.

Voraussetzung für eine "Far End"-Auswertung: REI muß vorhanden sein.

Die Auswertung von Bitfehlern kann durchgeführt werden an:

- · ungerahmten Mustern
- gerahmten Mustern und Bulksignalen
- Overhead Bytes E1, E2, F1, F2, F2L, D1 bis D3 und D4 bis D12 im SOH/POH von SDH-Signalen

Wegen der speziellen Blockfehlerauswertung mit BIP-1 Blöcken wird das Gerät im Auswertemodus "Bitfehler" betrieben. Sie können daher keine Blockfehlerauswertung einschalten. Dies gilt nicht für den Meßpunkt TSE. Für diesen Meßpunkt werden echte Blockfehler ausgewertet. Deshalb können Sie bei einer G.829-Auswertung an TSE nicht auf Bitfehlerauswertung umschalten.

Anzeige

der Defekte über LEDs

(auch im Fenster Anomaly/Defect Analyzer - Summarische Darstellung):

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

5.6 Auswertung nach ITU-T M.2100

Die Auswertung erfolgt nach ES, EFS, SES und UAS.

Gut-/Unbestimmt-/Schlecht-Bewertung anhand der Schwellwerte S1 und S2 jeweils für ES und SES. Die Schwellwerte werden intern nach M.2100 berechnet und im Ergebnisfenster angezeigt.

Einstellmöglichkeiten für S1 und S2:

BISO-Multiplikationsfaktor

("Bringing into Service Objectives"-Multiplikationsfaktor)........................0,1 bis 100

M.2100 kann an folgenden Ereignissen gemessen werden:

- FAS-Fehler (FAS1.5, FAS2, FAS8, FAS34, FAS45 und FAS140)
- CRC4-Fehler
- CRC6-Fehler
- EBit-Fehler
- PBit-Fehler
- Bitfehler (TSE)

Bei PCM30/31CRC-Signalen wird gleichzeitig am "Nahen Ende" und am "Fernen Ende" ausgewertet.

Die Auswertung von Bitfehlern kann durchgeführt werden an:

- ungerahmten Mustern
- gerahmten Mustern und Bulksignalen
- n x 64 kbit
- Overhead Bytes E1, E2, F1, F2, D1 bis D3 und D4 bis D12

Bei eingeschalteter M.2100-Auswertung kann nicht auf Blockfehlerauswertung umgeschaltet werden, da eine Bitfehlerauswertung erforderlich ist.

Anzeige

der Defekte über LEDs

(auch im Fenster Anomaly/Defect Analyzer – Summarische Darstellung):

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

5.7 Auswertung nach ITU-T M.2101

Die Auswertung erfolgt nach ES, EFS, SES, UAS, BBE und SEP.

Gut-/Unbestimmt-/Schlecht-Bewertung anhand der Schwellwerte S1 und S2 jeweils für ES, SES, BBE und SEP. Die Schwellwerte werden intern nach M.2101 berechnet und im Ergebnisfenster angezeigt.

Einstellmöglichkeiten für S1 und S2:

BISO-Multiplikationsfaktor

("Bringing into Service Objectives"-Multiplikationsfaktor) 0,1 bis 100

M.2101 kann an folgenden Ereignissen gemessen werden:

- B1
- B2SUM
- MS-REI
- B3
- HP-REI
- LP-BIP 2/8
- LP-REI
- Bitfehler (TSE)

Die Auswertung von "Near End" und "Far End" erfolgt gleichzeitig, sobald die eingestellte Signalstruktur eine "Far End"-Messung ermöglicht.

Voraussetzung für eine "Far End"-Auswertung: REI muß vorhanden sein.

Die Auswertung von Bitfehlern kann durchgeführt werden an:

- · ungerahmten Mustern
- gerahmten Mustern und Bulksignalen
- Overhead Bytes E1, E2, F1, F2, F2L, D1 bis D3 und D4 bis D12 im SOH/POH von SDH-Signalen

Da mit der M.2101-Auswertung Blockfehler gemessen werden, kann keine Bitfehlerauswertung eingeschaltet werden. Ausnahme: B2SUM. Dort werden BIP-1-Blöcke benutzt. Diese sind im Gerät nur über die Bitfehlermessung zugänglich. Deshalb kann bei einer M.2101-Auswertung an B2SUM nicht auf Blockfehlerauswertung umgeschaltet werden.

Anzeige

der Defekte über LEDs

(auch im Fenster Anomaly/Defect Analyzer – Summarische Darstellung):

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

6 Automatische Meßabläufe

6.1 Autokonfiguration

Die Autokonfiguration führt eine automatische Einstellung des Empfängers des ANT-20SE durch. Gesucht wird an den elektrischen Eingängen (Eingangsspannungsbereiche "ITU-T"/ "High" oder "PMP"/"Low") oder an den optischen Eingängen nach SDH-, SONET-, PDH- oder ATM-Standard-Signalen. Hierbei werden die Geräte-Version sowie die vorhandenen Optionen berücksichtigt. Hauptaugenmerk wird auf das Erkennen der Signal-Struktur gelegt, die Detailanpassung an die Signal-Inhalte kann bei Bedarf manuell erfolgen.

Der Ablauf gliedert sich in die drei Teile:

- Check Interface
- Check Mapping
- Check Payload

6.1.1 Check Interface

Anpassung an die physikalischen Parameter (Bitrate/Code)

berücksichtigte Defekte	 														-			LO	S
weitere Kriterien	 F	req	uen	zof	fse	et d	ler	Ei	ng	ar	ngs	sb	itra	ate	>	15	50	ppı	m

6.1.2 Check Mapping

Suche nach der Mapping-Struktur anhand der Signal-Label und der Pointer-Bytes (Unterscheidung AU-4/AU-3). Die Suche erfolgt immer im Kanal #1.

Bei einem STM-16-/OC-48-Signal wird im Mode "ITU-T" nur nach einer AU-4-Struktur gesucht und im Mode "ANSI" nur nach einer AU-3-Struktur.

OC-12c/STM-4c Virtual Concatenation wird von der Autokonfiguration nicht erkannt.

Berücksichtigte Defekte:

Defekt (SDH)	Defekt (SONET)
LOF/OOF	LOF/OOF
AU-AIS	AIS-P
MS-AIS	AIS-L
TU-AIS	AIS-V
AU-LOP	LOP-P
TU-LOP	LOP-V
LOM	LOM

Tabelle TD-15 Berücksichtigte Defekte bei der Autokonfiguration

Beim Erkennen von UNEQuipped bleibt das zuvor gewählte Mapping eingestellt, bzw. es wird ein Default-Mapping eingestellt.

Die Autokonfiguration erkennt das Mapping "C-11 über TU-12" als "C-12"-Mapping.

6.1.3 Check Payload

Die Suche berücksichtigt nur die in den Standards empfohlenen Meßmuster.

6.1.3.1 PDH-Signale

6.1.3.2 ATM-Signale

Suche nach ATM-Signalen

berücksichtigte Defekte LOF/(OOF), AIS, LCD, LOF PLCP, AIC, IDLE DS3

TD-28 Technische Daten

6.1.4 Struktur und Ergebnisse

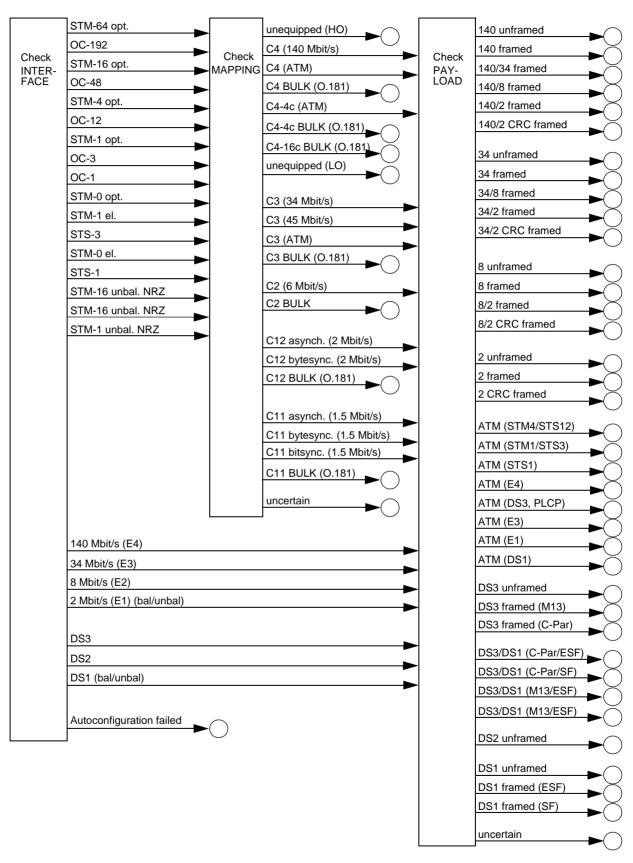


Bild TD-6 Struktur und Ergebnisse

6.2 Automatische "Scan"-Funktion

Die "Scan"-Funktion ermöglicht den sequentiellen Test aller Zubringerkanäle in einem SDHoder SONET-Signal. Hierzu sind die entsprechenden Mapping-Optionen erforderlich.

SDH-Signale
SONET-Signale

Der Test wird innerhalb einer AU (SDH-Version) oder SPE (SONET-Version) durchgeführt. Die Auswahl der verschiedenen AUs/SPEs bei Signalen mit höhreren Bitraten muß manuell erfolgen.

Bei Schleifenmessungen sind die Einstellungen des Senders und des Empfängers aufeinander abzustimmen.

Das Durchschalten der Kanäle erfolgt auf der Sende- und Empfangsseite synchron. Bei unterschiedlich eingestellter Signalstuktur werden nur die Empfangskanäle verändert.

Im Empfänger des ANT-20SE werden die Defekte des Empfangssignals, der zugehörigen SDH-/SONET-Struktur und des Kanals überprüft. Die Ergebnisse der einzelnen Kanäle werden in einer Matrix dargestellt.

Berücksichtigte Defekte:

Defekt (SDH)	Defekt (SONET)	
LOS	LOS	
LOF/OOF (SDH)	LOF/OOF (SONET)	
AU-AIS	AIS-P	
MS-AIS	AIS-L	
TU-AIS	AIS-V	
AU-LOP	LOP-P	
TU-LOP	LOP-V	
HP-UNEQ	UNEQ-P	
LP-UNEQ	UNEQ-V	
TU-LOM	LOM	
AIS (2 Mbit/s)	AIS (E1)	
LOF (2 Mbit/s)	LOF (E1)	
AIS (1,5 Mbit/s)	AIS (DS1)	
LOF (1,5 Mbit/s)	LOF (DS1)	
OOF (1,5 Mbit/s)	OOF (DS1)	
AIS (64kbit/s)	AIS (64kbit/s)	
LSS	LSS	

Tabelle TD-16 Berücksichtigte Defekte bei der "Scan"-Funktion

TD-30 Technische Daten

6.3 Automatische "Search"-Funktion

Die "Search"-Funktion ermöglicht die Suche nach einem Zubringerkanal in einem SDH- oder SONET-Signal. Hierzu sind die entsprechenden Mapping-Optionen erforderlich.

Der Test wird innerhalb einer AU (SDH-Version) oder SPE (SONET-Version) durchgeführt. Die Auswahl der verschiedenen AUs/SPEs bei Signalen mit höhreren Bitraten muß manuell erfolgen.

Bei der Suche werden nur die Empfangskanäle verändert.

Im Empfänger des ANT-20SE werden die Defekte des Empfangssignals, der zugehörigen SDH-/SONET-Struktur und des Kanals überprüft. Die Ergebnisse der einzelnen Kanäle werden in einer Matrix dargestellt.

Berücksichtigte Defekte:

Defekt (SDH)	Defekt (SONET)
LOS	LOS
LOF/OOF (SDH)	LOF/OOF (SONET)
AU-AIS	AIS-P
MS-AIS	AIS-L
TU-AIS	AIS-V
AU-LOP	LOP-P
TU-LOP	LOP-V
HP-UNEQ	UNEQ-P
LP-UNEQ	UNEQ-V
TU-LOM	LOM
AIS (2 Mbit/s)	AIS (E1)
LOF (2 Mbit/s)	LOF (E1)
AIS (1,5 Mbit/s)	AIS (DS1)
LOF (1,5 Mbit/s)	LOF (DS1)
OOF (1,5 Mbit/s)	OOF (DS1)
AIS (64 kbit/s)	AIS (64kbit/s)
LSS	LSS

Tabelle TD-17 Berücksichtigte Defekte bei der "Search"-Funktion

6.4 Automatische "Trouble Scan"-Funktion

Die "Trouble Scan"-Funktion ermöglicht den sequentiellen Test aller Zubringerkanäle in einem SDH- oder SONET-Signal. Hierzu sind die entsprechenden Mapping-Optionen erforderlich.

SDH-Signale	
SONET-Signale	VT1.5-Mapping VT2-Mapping VT6-Mapping

Der Test wird innerhalb einer AU (SDH-Version) oder SPE (SONET-Version) durchgeführt. Die Auswahl der verschiedenen AUs/SPEs bei Signalen mit höhreren Bitraten muß manuell erfolgen.

Bei der "Trouble Scan"-Funktion werden nur die Empfangskanäle verändert.

Im Empfänger des ANT-20SE werden die Defekte des Empfangssignals, der zugehörigen SDH-/SONET-Struktur und des Kanals überprüft. Die Ergebnisse der einzelnen Kanäle werden in einer Matrix dargestellt. Innerhalb der Matrix läßt sich durch die Auswahl eines einzelnen Kanals eine detaillierte Alarm-Historie anzeigen.

Berücksichtigte Defekte:

Defekt (SDH)	Defekt (SONET)
LOS	LOS
LOF/OOF (SDH)	LOF/OOF (SONET)
AU-AIS	AIS-P
MS-AIS	AIS-L
TU-AIS	AIS-V
AU-LOP	LOP-P
TU-LOP	LOP-V
MS-RDI	RDI-L
HP-RDI	RDI-P
LP-RDI	RDI-V
HP-UNEQ	UNEQ-P
LP-UNEQ	UNEQ-V
TU-LOM	LOM
HP-PDI	PDI-P
LP-PDI	PDI-V
AIS (2 Mbit/s)	AIS (E1)
LOF (2 Mbit/s)	LOF (E1)

Tabelle TD-18 Berücksichtigte Defekte bei der "Trouble SCAN"-Funktion

TD-32 Technische Daten

Defekt (SDH)	Defekt (SONET)
RDI (2 Mbit/s)	RDI (E1)
AIS (1,5 Mbit/s)	AIS (DS1)
LOF (1,5 Mbit/s)	LOF (DS1)
OOF (1,5 Mbit/s)	OOF (DS1)
YELLOW (1,5 Mbit/s)	YELLOW (DS1)

Tabelle TD-18 Berücksichtigte Defekte bei der "Trouble SCAN"-Funktion (Fortsetzung)

6.5 Automatische Laufzeit-Messung

Der ANT-20SE mißt Signallaufzeiten zwischen Sende- und Empfangsteil mit Hilfe charakteristischer Sequenzen der eingestellten Quasizufallsfolge. Die Laufzeit-Messung ist eine automatische Dauermessung, bei der Einzelmessungen repetierend durchgeführt werden. Sie kann mit nahezu allen einstellbaren Signalstrukturen im ANT-20SE durchgeführt werden.

Ausnahmen:

- ATM-Signalstrukturen
- Messungen im Overhead
- · Through Mode
- ADM-Test

Meßbereich und Meßzeit hängen von der Musterbitrate und dem gewählten Muster ab. Der maximal mögliche Meßwert wird durch die Länge der Quasizufallsfolge bestimmt. Dieses Maximum wird errechnet und im Ergebnisfenster angezeigt. Durch die Auswahl eines kurzen oder langen Meßmusters kann dieser Maximalwert beeinflußt werden.

Signalstruktur	Kurzes Meßmuster	Max. Meßwert in ms	Langes Meßmuster	Max. Meßwert in ms
C4-Bulk	PRBS23 ¹	56	-	56
C3-Bulk	PRBS23 ¹	173	-	173
C2-Bulk	PRBS20	154	PRBS23	1236
C12-Bulk	PRBS20	481	PRBS23	3855
C11-Bulk	PRBS20	655	PRBS23	5242
140M unframed	PRBS23 ¹	60	-	60
140M framed	PRBS23 ¹	60	-	60
45M unframed	PRBS23 ¹	187	-	187
45M framed	PRBS23 ¹	189	-	189
34M unframed	PRBS23 ¹	244	-	244
34M framed	PRBS23 ¹	246	-	246
8M unframed	PRBS20	124	PRBS23	992
8M framed	PRBS20	125	PRBS23	985
6M unframed	PRBS20	166	PRBS23	1328
6M framed	PRBS20	169	PRBS23	1356
2M unframed	PRBS20	512	PRBS23	4096
2M framed PCM30	PRBS20	546	PRBS23	4369
2M framed PCM31	PRBS20	528	PRBS23	4228
1.5M unframed	PRBS20	679	PRBS23	5433
1.5M framed	PRBS20	682	PRBS23	5461

¹ Messung ist nur mit diesem Meßmuster möglich

Tabelle TD-19 Maximale Meßwerte in Abhängigkeit von Signalstruktur und Meßmuster

TD-34 Technische Daten

² abhängig von n

Signalstruktur	Kurzes Meßmuster	Max. Meßwert in ms	Langes Meßmuster	Max. Meßwert in ms
n x 64 k unframed $(25 \le n \le 32)$	PRBS20	511 bis 655 ²	PRBS23	4095 bis 5242 ²
n x 64 k unframed $(17 \le n \le 24)$	PRBS20	682 bis 963 ²	PRBS23	5461 bis 7710 ²
n x 64 k unframed $(9 \le n \le 16)$	PRBS15	31 bis 56 ²	PRBS23	8191 bis 14563 ²
n x 64 k unframed $(2 \le n \le 8)$	PRBS15	255 bis 63 ²	PRBS20	2047 bis 8191 ²
64k unframed	PRBS15	511	PRBS20	16383

¹ Messung ist nur mit diesem Meßmuster möglich

Tabelle TD-19 Maximale Meßwerte in Abhängigkeit von Signalstruktur und Meßmuster (Fortsetzung)

Ebenfalls sind Genauigkeit und Anzeigeauflösung abhängig von der Musterbitrate.

Musterbitrate	Genauigkeit	Auflösung
64 kbit/s < 1,544 Mbit/s	± 200 µsec	100 µsec
1,544 Mbit/s ≤ 8,448 Mbit/s	± 10 µsec	10 µsec
> 8,448 Mbit/s	± 1 μsec	1 µsec

Tabelle TD-20 Genauigkeit der Laufzeit-Messung in Abhängigkeit von der Musterbitrate

² abhängig von n

7 Zusätzliche Ein- und Ausgänge

7.1 DCC/ECC [21]

Schnittstelle zum Einfügen/Ausgeben von SOH/POH-Bytes.

Es erfolgt eine dynamische Belegung in Echtzeit mit kontradirektionalem Takt- und Synchronsignal von n x 64 kbit/s-Kanälen pro Rahmen.

Das Taktsignal ist geglättet. Die Abtastung eines Datensignals (RX-Daten) erfolgt auf der fallenden Flanke des Taktes (RX-Clock), der Wechsel der Daten (TX-Daten) auf der ansteigenden Flanke des Taktes (TX-Clock)

64 kbit/s: 1 Byte/Rahmen 128 kbit/s: 2 Byte/Rahmen 192 kbit/s: 3 Byte/Rahmen 576 kbit/s: 9 Byte/Rahmen

Schnittstelle entsprechend V.11 (ITU-T X.24 und X.27)

Pin-Nr.	Belegung	Eingang/Ausgang				
1	Masse					
2	Masse					
3	RX-Daten	Eingang				
4	RX-Daten (inv)	Eingang				
5	RX-Control	Ausgang				
6	RX-Control (inv)	Ausgang				
7	RX-Takt	Eingang/Ausgang				
8	RX-Takt (inv)	Eingang/Ausgang				
9	RX-Synch	Eingang/Ausgang				
10	RX-Synch (inv)	Eingang/Ausgang				
11	TX-Daten	Ausgang				
12	TX-Daten (inv)	Ausgang				
13	TX-Control	Ausgang				
14	TX-Control (inv)	Ausgang				
15	TX-Takt	Ausgang				
16	TX-Takt (inv)	Ausgang				
17	TX-Synch	Ausgang				
18	TX-Synch (inv)	Ausgang				
19	Masse					
20	+5 V/100 mA					
(inv): inverses Signal						

Tabelle TD-21 Pinbelegung der DCC/ECC-Schnittstelle (V.11)

TD-36 Technische Daten

7.3

7.2 TRIGGER [26]

Buchse
Eingang
Innenwiderstand
Zulässiger Bereich der Pulsamplitude
Max. zulässiger Scheitelwert der Eingangsspannung
Ausgang
Referenztakt
TSE (Test Sequence Error)
TX-Rahmentrigger (SDH- und SONET-Signale)
TX-Mustertrigger
Innenwiderstand
PulsamplitudeHCMOS-Pegel
Max. zulässiger Scheitelwert der Fremdspannung
REF CLOCK IN [25]
Referenztakt-Eingang
SDH-Version 3035/01
Buchse
Innenwiderstand

Eingangssignal	Code, Pulsform	Amplitude	Kopplung	max. zulässiger Offset
2,048 Mbit/s	HDB3	2,34 V ± 10%	DC	± 10 ppm
2,048 MHz (Clock)	Rechteck, Sinus	1 Vpp bis 5 Vpp	AC	± 10 ppm
1,544 Mbit/s	B8ZS	2,34 V ± 10%	DC	± 10 ppm
1,544 MHz (Clock)	Rechteck, Sinus	1 Vpp bis 5 Vpp	AC	± 10 ppm

Tabelle TD-22 Kenngrößen der anschließbaren Referenztakt-Signale

SONET-Version 3035/02

BuchseBant	am
Innenwiderstand) Ω
Max. zulässiger Scheitelwert der Eingangsspannung±	6 V

Eingangssignal	Code, Pulsform	Amplitude	Kopplung	max. zulässiger Offset
2,048 Mbit/s	HDB3	3,0 V ± 10%	DC	± 10 ppm
2,048 MHz (Clock)	Rechteck, Sinus	1 Vpp bis 5 Vpp	AC	± 10 ppm
1,544 Mbit/s	B8ZS	3,0 V ± 10%	DC	± 10 ppm
1,544 MHz (Clock)	Rechteck, Sinus	1 Vpp bis 5 Vpp	AC	± 10 ppm

Tabelle TD-23 Kenngrößen der anschließbaren Referenztakt-Signale

Statusanzeige "LTI" (Loss of Timing Interval)

LED leuchtet, wenn die Sendetakt-Erzeugung auf "Abgeleitet vom Referenztakt [25]" steht und kein Takt oder Signal anliegt. Die LED leuchtet auch, wenn der anliegende Takt oder das Signal einen Frequenzoffset > 10 ppm aufweist (Ansprechschwelle liegt zwischen 10 und 30 ppm).

7.4 CLOCK [22]

Taktausgang mit unverjittertem Sendetakt

BuchseBNC
Bitratenbereich
bei STM-4/OC-12, STM-16/OC-48, STM-64/OC-192
Innenwiderstand
Pulsamplitude
Max. zulässiger Scheitelwert der Fremdspannung

TD-38 Technische Daten

8 Eingebauter Bedien- und Steuerrechner (PC)

Betriebssystem
ANT-20SE
Die einschlägigen Copyright-Bestimmungen sind zu beachten.
СРИ
Die CPU unterliegt dem ständigen technischen Fortschritt. Aktuelle Eigenschaften der CPU sowie der Harddisk werden nach dem Einschalten des Gerätes im Hochlaufbild angezeigt
CPUmind. 486/DX 4-100 3,3V-Technologie
Speicher
D-RAM
erweiterbar bis
Harddisk mind. 540 Mbyte
Floppy-Laufwerk
Laufwerk
Laufwerk
PCMCIA-Laufwerk [02]
PCMCIA-Laufwerk [02] Controller nach Standard

Technische Daten TD-39

Anschluß für externes Display [04]

Internes und externes Display können gleichzeitig betrieben werden. Schnittstelle Standard-VGA Buchse......15polige D-SUB-Buchse, 3reihig **Tastatur Eingebaute Tastatur** Anschluß für externe Tastatur [03] Bei Verwendung einer externen Tastatur muß die Konfiguration des Rechners angepaßt werden. Mausanschluß [01] Paralleles Interface [05] Schnittstelle IEEE 1284 Serielles Interface [06] Buchse......9polige D-SUB-Buchse, 2reihig **Batterie** Typ......Lithium Die Batterie dient nur zur Pufferung der PC-Uhr-Betriebsspannung und zur Sicherung des CMOS-Setup.

TD-40 Technische Daten

9 Allgemeine Kenndaten

9.1 Stromversorgung

Nennspannung (automatische Umschaltung) .	100 bis 125 V bzw. 200 bis 240 V
Betriebsbereich	
Netzfrequenz	50 bzw. 60 Hz ± 5%
Leistungsaufnahme ANT-20SE	< 600 VA
Schutzklasse nach IEC 1010-1	

9.2 Klimatische und mechanische Umgebungsbedingungen

	IEC 721-3	ETS 300 019-1	
Lagerung	Klasse IE 12	Klasse 1.1	
Transport	Klasse IE 23 ¹	Klasse 2.3 ¹	
Betrieb	Klasse IE 72	Klasse 7.1	
1 mit Einschränkungen beim Temperaturbereich (siehe Tab. TD-25)			

Tabelle TD-24 Zutreffende Klassen der IEC- und ETS-Normen

9.2.1 Klimatische und mechanische Daten

	Lagerung: IE 12 (1K3, 1M2) ETS 1.1	Transport: IE 23 (2K4, 2M3) ETS 2.3	Betrieb: IE 72 (7K1, 7M2) ETS 7.1
Temperatur	-5 bis +45 °C	-40 bis +70 °C (Einschr. auf -25 bis +70 °C)	+5 bis +40 °C (Grenzbetriebsbereich: 0 bis +50 °C)
Feuchte: < 30 °C Feuchte: > 30 °C	5 bis 95% 1 bis 29 g/m ³	5 bis 95% 1 bis 29 g/m ³	5 bis 85% 1 bis 25 g/m ³
Betauung	ja	ja	ja
Niederschlag	nein	6 mm/min	nein
Wasser	nein	1 m/s	nein
Vereisung	ja	ja	nein
Nässe	-	nasse Ladefläche	-
Sinusförmige Schwingung	9 bis 200 Hz: 5 m/s ²	8 bis 200 Hz: 20 m/s ² 200 bis 500 Hz: 40 m/s ²	9 bis 200 Hz: 10 m/s ² 200 bis 500 Hz: 15 m/s ²
Schock: 11 ms Dauer Schock: 6 ms Dauer	-	300 m/s ² 1000 m/s ²	100 m/s ² 300 m/s ²
Freier Fall	-	1,0 m	0,1 m
Kippfallen	-	alle Kanten	alle Kanten

Tabelle TD-25 Wesentliche Parameter der Klassen (siehe Tab. TD-24)

9.3 EG-Konformitätserklärung/CE-Kennzeichnung

Storaussendung	entsprechend EN 50 081-1
Störfestigkeit	entsprechend EN 50 082-1

9.3.1 EMV-Störaussendung

Störaussendung

Dieses Gerät erfüllt die Forderungen der EN 50 081-1 und damit die Grenzwertklasse B der EN 55 022 (identisch mit CISPR 22:1985 modif., DIN VDE 0878 Teil 3) und der FCC Rules Part 15 Subpart J Class A. Das Gerät entspricht den Schutzzielen der europäischen Richtlinie 89/336/EWG vom 03.05.89 bezüglich der Störaussendung. Eine besondere Betriebserlaubnis ist nicht erforderlich.

Das Gerät ist so geprüft, daß die Forderungen an die Störaussendung dieses Gerätes auch bei einem Betrieb in einem System erfüllt werden.

Voraussetzung ist ein korrekter Aufbau des Systems und die Verwendung der vorgesehenen Verbindungskabel, wobei besonders auf ausreichende Schirmung zu achten ist.

TD-42 Technische Daten

Wenn das Meßobjekt, mit dem dieses Gerät verbunden ist, selbst Störstrahlung verursachen kann, z.B. wenn die Verbindung zum Meßobjekt nicht durchgängig geschirmt ist, muß der Betreiber darauf achten, daß hierdurch keine unzulässige Störaussendung erzeugt wird. Es müssen dann geeignete Maßnahmen zur Schirmung getroffen werden

Störaussendung entspricht..... EN 55022/CISPR 22 Klasse B

Magnetisches Eigenstreufeld

9.3.2 EMV-Störfestigkeit

Tip: Funktionsminderung, selbsterholend:

Während der Störereignisse kann das vom Gerät empfangene Signal so beeinflußt werden, daß ein Fehler erkannt wird. Dies kann z.B. ein Codefehler und ja nach zeitlicher Lage, ein Bit- oder FAS- oder Paritäts-Fehler sein. Fehlerbüschel können zu Alarmen führen.

Die Fehler oder Alarme treten nur während der Störbeeinflussung auf.

Um die Störeinflüsse gering zu halten, ist ein korrekter Aufbau des Systems und die Verwendung der vorgesehenen Verbindungskabel erforderlich, wobei besonders auf ausreichende Schirmung zu achten ist.

Bei Verwendung von handelsüblichem PC-Zubehör ist darauf zu achten, daß die Zubehörteile den Erfordernissen der EMV-Anforderungen entsprechen (CE-Kennzeichnung)

Störfestigkeit gegen elektrostatische Entladung

nach IEC 1000-4-2 bzw. IEC 801-2

Störfestigkeit gegen gestrahlte Störgrößen

nach IEC 1000-4-3 bzw. IEC 801-3

Volle Funktionsfähigkeit bis 3 V/m

und bei 1890 MHz

Störfestigkeit gegen schnelle transiente Störgrößen

nach IEC 1000-4-4 bzw. IEC 801-4

auf den Signalleitungen

Funktionsminderung, selbsterholend bis 500 V

auf den Netzleitungen

Funktionsminderung, selbsterholend bis 1 kV

Abmessungen (b x h x t) in mm

TD-44 Technische Daten

9.7 Bestellangaben

9.7.1 Grundgerät ANT-20SE

Advanced Network Tester ANT-20SE SDH-Version	1
Ein STM-1-Mapping ist im Preis enthalten, bitte wählen Sie aus.	
Folgende Optionen sind enthalten:	
Touchscreen.	
Advanced Network Tester ANT-20SE SONET-Version	2
	2
SONET-Version	2

9.7.2 Optionen

Tο	uchscreer	١
. •	u 011001 001	•

Touchscreen
SONET-Mappings
STS-1-Mappings für ANSI-Zubringer
VT1.5 SPE/STM-0 (1,5 Mbit/s in STS-1) BN 3035/90.10 VT6 SPE (6 Mbit/s, ungerahmt in STS-1) BN 3035/90.11 STS-1 SPE (45 Mbit/s in STS-1) BN 3035/90.12
STS-1-Mappings für ETSI-Zubringer
VT2 SPE/STM-0 (2 Mbit/s in STS-1)BN 3035/90.13
DS1 und DS3 Interface
Fehlerratenmessung (BERT) 1,5/45 Mbit/s (in SONET-Version 3035/02 enthalten)
STM-1-Mappings
für ETSI-Zubringer
C-12 (2 Mbit/s in STM-1, AU-3/AU-4) BN 3035/90.01 C-3 (34 Mbit/s in STM-1, AU-3/AU-4) BN 3035/90.02 C-4 (140 Mbit/s in STM-1) BN 3035/90.03
für ANSI-Zubringer
C-11 (1,5 Mbit/s in STM-1, AU-3/AU-4, TU-11/TU-12) BN 3035/90.04 C-3 (45 Mbit/s in STM-1, AU-3/AU-4) BN 3035/90.05 C-2 (6 Mbit/s, ungerahmt in STM-1, AU-3/AU-4) BN 3035/90.06
Extended Overhead AnalysisBN 3035/90.15
Drop & Insert
PDH-Funktionen
PDH MUX/DEMUX-Kette 64k/140M BN 3035/90.30 PDH DEMUX-Kette 64k/140M BN 3035/90.31 M13 MUX/DEMUX-Kette BN 3035/90.32 Fehlerhäufigkeitsmessung (BERT) 2/8/34/140 Mbit/s BN 3035/90.33 (in SDH-Version 3035/01 enthalten) BN 3035/90.33

TD-46 Technische Daten

Optische Schnittstellen

Optik STM-0/1, OC-1/3, 1310 nm. .BN 3035/90.43 Optik STM-0/1, OC-1/3, 1550 nm. .BN 3035/90.44 Optik STM-0/1, OC-1/3, 1310 und 1550 nm. .BN 3035/90.45
Optik STM-0/1/4, OC-1/3/12, 1310 nm. .BN 3035/90.46 Optik STM-0/1/4, OC-1/3/12, 1550 nm. .BN 3035/90.47 Optik STM-0/1/4, OC-1/3/12, 1310 und 1550 nm. .BN 3035/90.48
STM-16/OC-48 1550 nm
STM-64/OC-192 1550 nm Generator/Analyzer .BN 3035/91.40 STM-64/OC-192 1550 nm Generator .BN 3035/91.41 STM-64/OC-192 1550 nm Analyzer .BN 3035/91.42
Optischer Leistungsteiler (90/10%)
Optischer Abschwächer (steckbar) SC-PC, 1310 nm, 15 dB
OC-12c/STM-4c-Optionen
OC-12c/STM-4c Bit Error Tester (erfordert Optik BN 3035/90.46, 90.47 oder 90.48)
die Optionen BN 3035/90.38, 91.53, 91.54, 91.59 sind alternativ)
· · ·
(erfordert Optik BN 3035/90.46, 90.47 oder 90.48)
(erfordert Optik BN 3035/90.46, 90.47 oder 90.48)
(erfordert Optik BN 3035/90.46, 90.47 oder 90.48)

Wavetek Wandel Goltermann bietet eine große Auswahl an optischen Pegelmessern, Pegelsendern, Abschwächern und Meßzubehör. Bitte fragen Sie Ihren Vertriebspartner nach weiteren Informationen.

Jitter und Wander nach O.172

O.172 Jitter Generator bis 155 Mbit/s BN 3035/90.81 O.172 Jitter Meter bis 155 Mbit/s BN 3035/90.82 O.172 Jitter Generator 622 Mbit/s BN 3035/90.82
(erfordert BN 3035/90.81)
(erfordert BN 3035/90.82)
(erfordert BN 3035/90.81 bis 155 Mbit/s und 90.83 für 622 Mbit/s)
(erfordert BN 3035/90.82 bis 155 Mbit/s und 90.84 für 622 Mbit/s)BN 3035/90.86 O.172 Wander Generator 2488 Mbit/s
(erfordert BN 3035/90.81 und BN 3035/90.88)
O.172 Jitter Generator/Analysator 2488 Mbit/sBN 3035/90.88 O.172 Wander Analysator 2488 Mbit/s
(erfordert BN 3035/90.88)
(erfordert BN 3035/90.86 bis 622 Mbits/s und BN 3035/90.89 für 2488 Mbit/s)
und bin 3035/90.69 ful 2466 Mblt/s)
ATM-Funktionen
ATM Modul
enthält ATM-Mapping STM-1/STS-3c
ATM Broadband Analyzer/Generator
7 ATM Manuinus
Zusätzliche ATM-Mappings
nur in Kombination mit ATM-Modul 3035/90.70 oder BN 3035/90.80
STS-1 (51 Mbit/s) BN 3035/90.71 E4 (140 Mbit/s) ¹ BN 3035/90.72 DS3 (45 Mbit/s) ² BN 3035/90.73 E3 (34 Mbit/s) ¹ BN 3035/90.74
E1 (2 Mbit/s) ¹
DS1 (1,5 Mbit/s) ²

9.7.3 Fernsteuerung

Fernsteuerung V.24	. BN 3035/91.01
Fernsteuerung GPIB	. BN 3035/92.10
LabWindows/CVI Driver	. BN 3038/95.99

TD-48 Technische Daten

9.7.4 Fernbedienung

9.7.5 Test-Automatisierung

9.7.6 Kalibrierung

9.7.7 Zubehör

Im Lieferumfang enthalten

- Filtermatten
- Netzkabel
- 2 Kabel
- Bedienungsanleitung

Auf Wunsch

Transportkoffer für ANT-20SE	BN 3035/92.03
Externe Tastatur (Englisch /U.S.)	BN 3035/92.04
Decoupler, -20 dB, Stecker-Buchse 1,6/5,6	BN 3903/63
Tastkopf TKD-1, 48 bis 8500 kbit/s	BN 882/01
WG PenBERT Mini-PCM-Monitor (E1)	BN 4555/11

9.7.8 Nachrüstung von Optionen

Alle Optionen sind durch das weltweite Servicenetz von Wavetek Wandel Goltermann nachrüstbar.

9.7.9 Hinweis für Benutzer des ANT-20SE

Für den ANT-20SE wurden Hard- bzw. Software-Options-Pakete gebildet. Zuordnung der Baugruppen und Software ANT-20SE – ANT-20/ANT-20E:

	Baugruppe/Software	Baunummer (BN) ANT-20SE	äquivalente Options-Baunummer (BN)
	Grundgerät SDH	3060/01	3035/41 bzw. 3035/21 + 3035/92.15 + 3035/93.11 + 3035/90.01
	Grundgerät SONET	3060/02	3035/42 bzw. 3035/22 + 3035/92.15 + 3035/93.11 + 3035/90.10
dgerät	Extended SDH Testing	3060/90.01	3035/90.02, 3035/90.03, 3035/90.04, 3035/90.05, 3035/90.06, 3035/90.15
ANT-20SE Grundgerät	Extended SONET Testing	3060/90.02	3035/90.11, 3035/90.12, 3035/90.13, 3035/90.03, 3035/90.15
ANT-20	Add SONET (Ergänzung SONET für SDH-Grundgerät)	3060/90.03	3035/90.10, 3035/90.11, 3035/90.12, 3035/90.13, 3035/90.34
	Add SDH (Ergänzung SDH für SONET-Grundgerät)	3060/90.04	3035/90.01, 3035/90.02, 3035/90.04, 3035/90.05, 3035/90.06, 3035/90.33
	Drop&Insert (Through mode, Block&Replace)	3060/90.10	3035/90.20
	PDH MUX/DEMUX (64/140)	3060/90.11	3035/90.30
	M13 MUX/DEMUX	3060/90.12	3035/90.32
12	STM-1, OC-1/3 1310 nm	3060/91.01	3035/90.43 + 2 Adapter
1/3/	STM-1, OC-1/3 1310 nm & 1550 nm	3060/91.02	3035/90.45 + 2 Adapter
000	STM-1/4, OC-1/3/12 1310 nm	3060/91.11	3035/90.46 + 2 Adapter
-1/4,	STM-1/4, OC-1/3/12 1310 nm & 1550 nm	3060/91.12	3035/90.48 + 2 Adapter
Optik STM-1/4, OC-1/3/12	Optischer Leistungsteiler	3060/91.05	3035/90.49 + 3 Adapter
ptik (OC-12c BULK	3060/90.90	3035/90.90
ō	OC-12c Virtual concat.	3060/90.92	3035/90.92

Tabelle TD-26 Zuordnung der Options-Pakete

TD-50 Technische Daten

	Baugruppe/Software	Baunummer (BN) ANT-20SE	äquivalente Options-Baunummer (BN)		
	STM-16, OC-48 1550 nm	3060/91.50	3035/91.53 + 2 Adapter		
	STM-16, OC-48 1310 nm	3060/91.51	3035/91.54 + 2 Adapter		
	STM-16, OC-48 1310 nm & 1550 nm	3060/91.52	3035/91.59 + 2 Adapter		
	STM-16, OC-48 15 nm spezial	3060/91.53	3035/90.38 + 2 Adapter		
48	OC-48c BULK	3060/90.93	3035/90.93		
M-16, OC-48	Paket: STM-0/1/4/16 1310 nm + Concat.	3060/90.55	3035/90.46, 3035/91.54, 3035/90.90, 3035/90.93, + 4 Adapter		
Optik STM-16,	Paket: STM-0/1/4/16 1550 nm + Concat.	3060/90.56	3035/90.47, 3035/91.53, 3035/90.90, 3035/90.93, + 4 Adapter		
	Paket: STM-0/1/4/16 1310 nm & 1550 nm + Concat.	3060/90.57	3035/90.48, 3035/91.59, 3035/90.90, 3035/90.93, + 4 Adapter		
	Paket: STM-0/1/4 1310 nm STM-16 1550 nm + Concat.	3060/90.58	3035/90.46, 3035/91.53, 3035/90.90, 3035/90.93, + 4 Adapter		
.5	Paket: O.172 Jitter/Wander bis 155 Mbit/s	3060/91.30	3035/90.81, 3035/90.85, 3035/90.82, 3035/90.86		
J.17	Paket: O.172 Jitter/Wander bis 622 Mbit/s	3060/91.31	3035/91.31		
Jitter O.172	Paket: O.172 Jitter/Wander bis 2488 Mbit/s	3060/91.32	3035/91.32		
ij	MTIE/TDEV Analyse (Bestandteil von 3060/91.30 bis 91.32)	-	3035/95.21		
	ATM Basic	3060/90.50	3035/90.70		
	ATM Comprehensive	3060/90.51	3035/91.80		
ATM	Add ATM SDH	3060/90.52	3035/90.72, 3035/90.74, 3035/90.75, 3035/90.77, 3035/90.33		
	Add ATM SONET	3060/90.53	3035/90.71, 3035/90.73, 3035/90.76, 3035/90.34,		
	OC-12c ATM Testing	3060/90.91	3035/90.91		
	Fernsteuerung V.24	3035/91.01			
	Fernsteuerung GPIB	3035/92.10			
	Remote Operation Modem	3035/95.30			
ör	Remote Operation LAN/PCMCIA	3035/95.31			
Zubehör	PDH/SDH NEXT Expert	3035/95.40			
Zr	CATS Test Sequencer	3035/95.90			
	LabWindows/CVI Treiber	3035/95.99			
	Kalibrierbericht	3035/94.01			
	Transportkoffer 3035/92.03				

Tabelle TD-26 Zuordnung der Options-Pakete (Fortsetzung)

Notizen:

TD-52 Technische Daten

ANT-20SE Advanced Network Tester

Extended Overhead Analysis STM-1-Mappings

BN 3060/90.01

Extended Overhead Analysis STS-1-Mappings

BN 3060/90.02

Drop&Insert

BN 3060/90.10 in Kombination mit STM-1-/STS-1-Mappings

Softwareversion 7.20

Technische Daten

Inhalt

Te	chnisch	e Daten Extended Overhead Analysis	
1	Overhe	ad Capture	TD-1
2	APS-So	chaltzeitmessung	TD-2
Те	chnisch	e Daten STM-1-Mappings	
1	STM-1-	Mappings	TD-3
	1.1	Allgemeines	TD-3
	1.2	Kanalnumerierung der Zubringer	TD-4
	1.3	Scrambling/Descrambling	TD-4
	1.4	Overhead-Erzeugung	TD-5
	1.4.1	Section Overhead (SOH)	TD-5
	1.4.2	STM-1-Fehlereinblendung (Anomalien)	TD-6
	1.4.3	STM-1-Alarmerzeugung (Defekte)	TD-7
	1.4.4	Erzeugen von Pointeraktionen	TD-8
	1.4.5	STM-1-Fehlermessungen (Anomalien)	TD-11
	1.4.6	STM-1-Alarmerkennung (Defekte)	TD-12
	1.4.7	Messung von AU- und TU-Pointeraktionen	TD-13
	1.4.8	VC-4 Path Overhead (POH), High Order	TD-14
	1.4.9	VC-3 Path Overhead (POH), High Order	TD-15
	1.4.10	Auswertung des Section Overhead (SOH) und VC-4/VC-3 Path Overhead (POH)	TD-16
	1.5	Mapping C-12 (2 Mbit/s in STM-1, AU-3/AU-4)	
	1.5.1	Belegung des VC-12 Path Overhead	TD-18
	1.5.2	VC-12-Fehlereinblendung (Anomalien)	TD-18
	1.5.3	VC-12-Alarmerzeugung (Defekte)	TD-19
	1.5.4	VC-12-Fehlermessungen (Anomalien)	TD-19
	1.5.5	VC-12-Alarmerkennung (Defekte)	TD-20
	1.5.6	Auswertung des VC-12 Path Overhead	TD-20
	1.6	Mapping C-3 (34/45 Mbit/s in STM-1, AU-3/AU-4)	TD-21
	1.6.1	Belegung des VC-3 Path Overhead (Low Order)	TD-22
	1.6.2	VC-3-Fehlereinblendung (Anomalien)	TD-22
	1.6.3	VC-3-Alarmerzeugung (Defekte)	TD-23
	164	VC-3-Fehlermessungen (Anomalien)	TD-23

i

	1.6.5	VC-3-Alarmerkennung (Defekte)	ID-24
	1.6.6	Auswertung des VC-3 Path Overhead	TD-24
	1.7	Mapping C-4 (140 Mbit/s in STM-1/STS-3c)	TD-25
	1.8	Mapping C-11	
		(1,5 Mbit/s in STM-1, AU-3/AU-4, TU-11/TU-12)	TD-26
	1.8.1	Belegung des VC-11 Path Overhead	TD-28
	1.8.2	VC-11-Fehlereinblendung (Anomalien)	TD-28
	1.8.3	VC-11-Alarmerzeugung (Defekte)	TD-29
	1.8.4	VC-11-Fehlermessungen (Anomalien)	TD-29
	1.8.5	VC-11-Alarmerkennung (Defekte)	TD-30
	1.8.6	Auswertung des VC-11 Path Overhead	TD-30
	1.9	Mapping C-2 (6,3 Mbit/s in STM-1, AU-3/AU-4, TU-2) .	TD-31
	1.9.1	Belegung des VC-2 Path Overhead	TD-32
	1.9.2	VC-2-Fehlereinblendung (Anomalien)	TD-32
	1.9.3	VC-2-Alarmerzeugung (Defekte)	TD-33
	1.9.4	VC-2-Fehlermessungen (Anomalien)	TD-33
	1.9.5	VC-2-Alarmerkennung (Defekte)	TD-34
	1.9.6	Auswertung des VC-2 Path Overhead	TD-34
	1.10	Füllkanalbelegung	TD-34
2	Drop&Iı	nsert/Through Mode (Durchgangsbetrieb)	TD-35
	2.1	Funktionen	TD-35
	2.1.1	Takterzeugung	TD-36
	2.1.2	Overhead-Erzeugung	
	2.1.3	Fehlereinblendung (Anomalien)	
	2.1.4	Alarmerzeugung (Defekte)	
	2.1.5	Pointererzeugung	
	2.1.6	Messungen	
	2.2	Signalausgänge	
	2.2.1	Signalausgang "AUXILIARY" [11], elektrisch	
	2.2.2	Signalausgang "LINE/AUXILIARY" [13], elektrisch	
	2.3	Signaleingänge	
	2.3.1	Signaleingang "AUXILIARY" [10], elektrisch	
	2.3.2	Signaleingang "LINE/AUXILIARY" [12], elektrisch	

Technische Daten STS-1-Mappings

1	STS-1-M	Mappings	TD-41
	1.1	Allgemeines	TD-41
	1.2	Kanalnumerierung der Zubringer	TD-42
	1.3	Scrambling/Descrambling	TD-43
	1.4	Overhead-Erzeugung	TD-44
	1.4.1	Transport Overhead (TOH)	TD-44
	1.4.2	STS-N-Fehlereinblendung (Anomalien)	TD-46
	1.4.3	STS-N-Alarmerzeugung (Defekte)	TD-47
	1.4.4	Erzeugen von Pointeraktionen	TD-48
	1.4.5	STS-N-Fehlermessung (Anomalien)	TD-50
	1.4.6	STS-N-Alarmerkennung (Defekte)	TD-52
	1.4.7	Messung von STS- und VT-Pointeraktionen	TD-53
	1.4.8	Auswertung des Transport Overhead (TOH) und des Path Overhead (POH)	TD-53
	1.4.9	STS Path Overhead (POH)	TD-54
	1.5	Mapping STS-3c (E4 in STS-3c, ATM in STS-3c)	TD-55
	1.6	Mapping STS-1 SPE (DS3 in STS-1, 34/45 Mbit/s in STM-0)	TD-56
	1.7	Mapping VT1.5 SPE (DS1 in STS-1/3, 1,5 Mbit in STM-0)	TD-57
	1.7.1	Belegung des VT1.5 Path Overhead	TD-59
	1.7.2	VT1.5-Fehlereinblendung (Anomalien)	TD-59
	1.7.3	VT1.5-Alarmerzeugung (Defekte)	TD-60
	1.7.4	Auswertung des VT1.5 Path Overhead	TD-60
	1.7.5	VT1.5-Fehlermessungen (Anomalien)	TD-61
	1.7.6	VT1.5-Alarmerkennung (Defekte)	TD-61
	1.8	Mapping VT2 (E1 in STS-1/3, 2 Mbit/s in STM-0)	TD-62
	1.8.1	Belegung des VT2 Path Overhead	TD-63
	1.8.2	VT2-Fehlereinblendung (Anomalien)	TD-63
	1.8.3	VT2-Alarmerzeugung (Defekte)	TD-64
	1.8.4	Auswertung des VT2 Path Overhead	TD-64
	1.8.5	VT2-Fehlermessungen (Anomalien)	TD-65
	1.8.6	VT2-Alarmerkennung (Defekte)	. TD-65

	1.9	Mapping VT6 (6 Mbit/s in STS-1/3)TD-66
	1.9.1	Belegung des VT6 Path Overhead
	1.9.2	VT6-Fehlereinblendung (Anomalien) TD-67
	1.9.3	VT6-Alarmerzeugung (Defekte)
	1.9.4	Auswertung des VT6 Path Overhead
	1.9.5	VT6-Fehlermessungen (Anomalien)TD-69
	1.9.6	VT6-Alarmerkennung (Defekte)
	1.10	FüllkanalbelegungTD-69
2	Drop&Iı	nsert/Through Mode (Durchgangsbetrieb)
	2.1	Funktionen
	2.1.1	TakterzeugungTD-71
	2.1.2	Overhead-Erzeugung
	2.1.3	Fehlereinblendung (Anomalien)
	2.1.4	Alarmerzeugung (Defekte)
	2.1.5	Pointererzeugung
	2.1.6	Messungen
	2.2	SignalausgängeTD-73
	2.2.1	Signalausgang "AUXILIARY" [11], elektrisch TD-73
	2.2.2	Signalausgang "LINE/AUXILIARY" [13], elektrischTD-73
	2.3	SignaleingängeTD-74
	2.3.1	Signaleingang "AUXILIARY" [10], elektrischTD-74
	2.3.2	Signaleingang "LINE/AUXILIARY" [12], elektrisch TD-75

Technische Daten Extended Overhead Analysis

1 Overhead Capture

Funktion

Mit der "Capture"-Funktion kann ein Byte des SOH/TOH (bzw. zwei gleichzeitig bei K1, K2) oder ein Byte des Low/High Path POH aufgezeichnet werden.

Capture-Bytes

STS-1, STM-0, STM-1, STS3, STS3c	alle SOH/TOH/POH-Bytesalle Bytes des SOH #1 außer A1, A2, B1 alle Bytes des POH
OC-12, OC-48 ¹	·
Bufferlänge	265 Bytes bei Einbyte-Aufzeichnung
	200 Bytes bei Zweibyte-Aufzeichnung
Triggerart	S S
	Auftreten der Triggerbedingung
	oder manuell gestartet

1 STM-16, OC-48: ANT-20SE

Triggerereignisse

Alarme	IS-P), DI-L),
Compare/Compare not Auftreten eines bestimmten Wertes im Capture-Byte Nichtauftreten dieses Wertes (don't cares sind mö	e bzw
N1/N2 - TCM (N1/Z6 - TCM) ab Erkennung des TCM-FAS-Worts werden alle einschließlich der erkannten FAS-Bytes aufgezeit	Bytes
Auflösung	hmen
hh:mm:	
max Aufzeichnungszeit	
Ergebnisdarstellung Nummer, laufender Rahmen seit Tr	
Zeit seit Tr	igger,
Bytewert in Hexadezimal-, Binär- ASCII-Darste	-

Klartext bei K1, K2 (APS)

2 APS-Schaltzeitmessung

Sensorauswahl	MS-AIS, AU-AIS, TU-AIS,
	TSE, AIS-L, AIS-P, AIS-V
Auflösung	1 ms
Meßfehler	(siehe Tab. TD-1)
Noch registrierbare Mindestschaltzeit	125 µs
Max. meßbare Schaltzeit	
Max_erlaubte Grund-BER bei Sensor = TSF	2 F-4

Hierarchie	Sensor	Max. Meßfehler	
SDH	MS-AIS, AU-AIS, TU-AIS	± 1 ms	
SONET	AIS-L, AIS-P, AIS-V	± 1 ms	
PDH ungerahmt	TSE	± 2 ms	
PDH gerahmt	TSE	± 2 ms + T _{sync} ¹	
DSn ungerahmt	TSE	± 2 ms	
DSn gerahmt	TSE $\pm 2 \text{ ms} + \text{T}_{\text{sync}}^{1}$		
1 T _{svnc} ist die Dauer der Rahmensynchronisation die mitgemessen wird			

Tabelle TD-1 Maximale Meßfehler

Hierarchie	T _{sync} (typ.)
E4 (140 Mbit/s)	0,1 ms
E3 (34 Mbit/s)	0,1 ms
E2 (8 Mbit/s)	1 ms
E1 (2 Mbit/s)	2 ms
DS3 (45 Mbit/s)	6 ms
DS1 SF (1,5 Mbit/s)	3 ms
DS1 ESF (1,5 Mbit/s)	6 ms

Tabelle TD-2 Typische Werte für $T_{\rm sync}$

Technische Daten STM-1-Mappings

Diese technischen Daten umfassen die Optionen:

STM-1-Mappings

für ETSI-Zubringer

C-12 (2 Mbit/s in STM-1, AU-3/AU-4). C-3 (34 Mbit/s in STM-1, AU-3/AU-4). C-4 (140 Mbit/s in STM-1)	.BN 3035/90.02 .BN 3035/90.03
für ANSI-Zubringer	
C-11 (1,5 Mbit/s in STM-1, AU-3/AU-4, TU-11/TU-12)	
Drop&Insert	.BN 3035/90.20

1 STM-1-Mappings

1.1 Allgemeines

Mapping/Demapping

Die PDH-Zubringersignale werden über die AU-4- oder AU-3-Ebene in ein STM-1-Signal gemappt.

Inhalt des Containers für alle Mapping-Optionen:

- Gerahmtes oder ungerahmtes PDH-Testmuster in einem wählbaren Container (für 6 Mbit/s nur ungerahmt)
- PDH-Multiplex-Signal in einem gewählten Container (zusammen mit Option Mux-Demux-Kette 64k/140M oder M13)
- Belegung eines gewählten Containers mit einem Testmuster ohne Stopfbits (Bulk-Signal nach O.181)

Drop&Insert

In Verbindung mit den Mapping-Optionen gibt es eine zusätzliche Drop&Insert-Option (BN 3035/90.20), mit der Zubringersignale (an Buchsen) ausgegeben und eingefügt werden können.

1.2 Kanalnumerierung der Zubringer

TU-3	TU-2	TU-12	TU-11	TS-#
100	110	111	111	1
		112	112	22
		113	113	43
			114	64
	120	121	121	4
		122	122	25
		123	123	46
			124	67
	130	131	131	7
		132	132	28
		133	133	49
			134	70
	140	141	141	10
		142	142	31
		143	143	52
			144	73
	150	151	151	13
		152	152	34
		153	153	55
			154	76
	160	161	161	16
		162	162	37
		163	163	58
			164	79
	170	171	171	19
		172	172	40
		173	173	61
			174	82

TU-3	TU-2	TU-12	TU-11	TS-#
200	210	211	211	2
		212	212	23
		213	213	44
			214	65
	220	221	221	5
		222	222	26
		223	223	47
			224	68
	230	231	231	8
		232	232	29
		233	233	50
			234	71
	240	241	241	11
		242	242	32
		243	243	53
			244	74
	250	251	251	14
		252	252	35
		253	253	56
			254	77
	260	261	261	17
		262	262	38
		263	263	59
			264	80
	270	271	271	20
		272	272	41
		273	273	62
			274	83

TU-3	TU-2	TU-12	TU-11	TS-#
300	310	311	311	3
		312	312	24
		313	313	45
			314	66
	320	321	321	6
		322	322	27
		323	323	48
			324	69
	330	331	331	9
		332	332	30
		333	333	51
			334	72
	340	341	341	12
		342	342	33
		343	343	54
			344	75
	350	351	351	15
		352	352	36
		353	353	57
			354	78
	360	361	361	18
		362	362	39
		363	363	60
			364	81
	370	371	371	21
		372	372	42
		373	373	63
			374	84

Tabelle TD-3 Kanalnummern nach G.707 (Beziehung zwischen TU und Zeitschlitz TS#)

1.3 Scrambling/Descrambling

Das Scrambling/Descrambling geschieht nach der ITU-T-Empfehlung G.707.

1.4 Overhead-Erzeugung

1.4.1 Section Overhead (SOH)

Standard-Overhead STM-1 (hex)

soн										
	1	2	3	4	5	6	7	8	9	
1	A1	A1	A1	A2	A2	A2	J0		_	
	F6	F6	F6	28	28	28	01	AA	AA	
2	B1			E1	_		F1		_	
	XX	00	00	00	00	00	00	00	00	
3	D1			D2	_		D3		_	
	00	00	00	00	00	00	00	00	00	
4a	H1	Υ	Υ	H2	_		НЗ	НЗ	НЗ	bei AU-4
	68	9B	9B	00	FF	FF	00	00	00	
4b	H1	H1	H1	H2	H2	H2	НЗ	НЗ	НЗ	bei AU-3
	68	68	68	00	00	00	00	00	00	
5	B2	B2	B2	K1	_	_	K2	_	_	
	XX	XX	XX	00	00	00	00	00	00	
6	D4	_	_	D5	_	_	D6	_	_	
	00	00	00	00	00	00	00	00	00	
7	D7	_	_	D8	_	_	D9	_	_	
	00	00	00	00	00	00	00	00	00	
8	D10	_	_	D11	_	_	D12	_	_	
	00	00	00	00	00	00	00	00	00	
9	S1	Z1	Z1	Z2	Z2	M1	E2	_	_	
	00	00	00	00	00	00	00	00	00	

Tabelle TD-4 Belegung des SOH

XX: Eingeblendet über Parity-Bildung (B1, B2)

H1 und H2 sind abhängig von der eingestellten Pointer-Adresse (dargestellt Pointer-Adresse = 0), H3 davon, ob eine Pointer-Aktion stattfindet.

Belegung der SOH-Bytes

- Statisches Byte: alle außer B1, B2, H1, H2, H3
- Overhead Sequenz m, n, p: alle außer B1, B2, H1, H2, H3
- Trace Identifier: J0 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS11: E1, F1, E2 (Byte)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS11: D1 bis D3, D4 bis D12 (Byte-Gruppe)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): E1, F1, E2 (Byte)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): D1 bis D3, D4 bis D12, K1 bis K2 (Byte-Gruppe)

1.4.2 STM-1-Fehlereinblendung (Anomalien)

Bei der Auslöseart Fehlerhäufigkeit (Rate) wird eine Bitfehlerrate eingeblendet.

Anomalie	Single	Rate ¹	Burst m, n (Rahmen)
FAS	ja	2E-3 bis 1E-10	m = 1 bis 196000
B1	ja	2E-4 bis 1E-10	m = 1 bis 196000
B2	ja	2E-3 bis 1E-10	m = 1 bis 196000
MS-REI	ja	2E-3 bis 1E-10	m = 1 bis 196000
B3 ²	ja	2E-4 bis 1E-10	m = 1 bis 196000
HP-REI	ja	2E-4 bis 1E-10	m = 1 bis 196000
TSE	ja	1E-2 bis 1E-8	-
CODE	ja	-	-

¹ Mantisse: 1 bis 9 (nur 1 bei TSE), Exponent: -1 bis -10 (Ganzzahlen)

Tabelle TD-5 Einstellbare Anomalien (STM-1) mit Auslöseart

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

² Statische Fehlereinblendung, editierbar über eine 8-Bit-Maske (x = don't care, 1 = Fehlereinblendung)

1.4.3 STM-1-Alarmerzeugung (Defekte)

Defekt	Test Sensor- Funktion	Test Sensor -Schwellen	
	Ein/Aus	M in N	t1 t2
LOS ¹	ja	M = 800 bis 7200 N = 1600 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LOF	ja	M = 1 bis N - 1 $N = 1 \text{ bis } 8000^2$	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
RS-TIM	ja	-	-
MS-AIS	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
MS-RDI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
AU-LOP	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
AU-AIS	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
HP-UNEQ	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
HP-PLM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
HP-RDI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
HP-TIM	ja	-	-

¹ nur in Verbindung mit einer optischen Schnittstelle

Tabelle TD-6 Einstellbare Defekte (STM-1)

Die Einblendung von **Alarmen** (Defekte) **und Fehlern** (Anomalien) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

² im Grundgerät enthalten

1.4.4 Erzeugen von Pointeraktionen

Stimulation

Pointersequenzen

auf allen Pointerebenen nach ITU-T G.783

n: 1 bis 2000

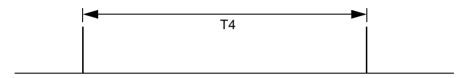


Bild TD-1 Perodische (Einzel-/Mehrfach-) Pointer gleicher Polarität

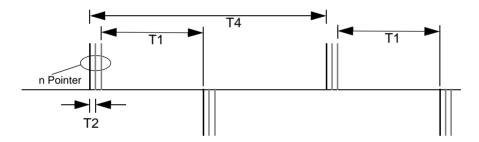


Bild TD-2 Periodische (Einzel-/Mehrfach-) Pointer unterschiedlicher Polarität

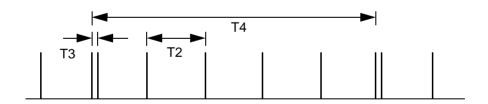


Bild TD-3 Periodische Pointer mit einem Doppel-Pointer

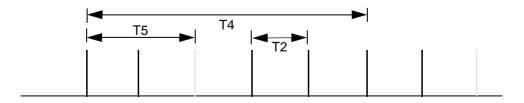


Bild TD-4 Periodische Pointer mit einem fehlenden Pointer

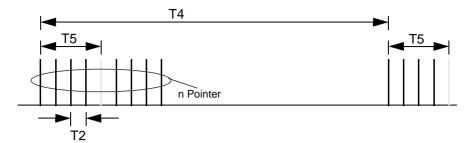


Bild TD-5 Pointer-Burst mit fehlenden Pointern

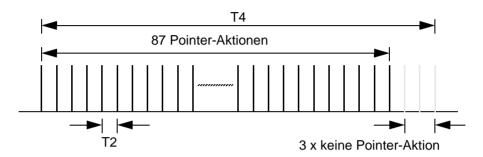


Bild TD-6 "87-3"-Sequenz

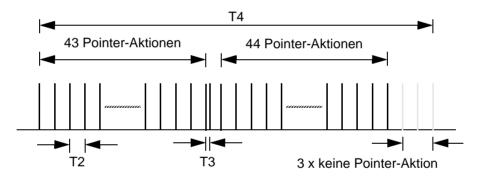


Bild TD-7 "43-44"-Sequenz mit Doppel-Pointer

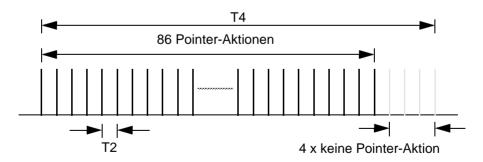


Bild TD-8 "86-4"-Sequenz mit fehlendem Pointer

Pointersprünge

Pointersprung vom Pointerwert A auf Pointerwert B (auch Setzen eines neuen Pointers).

Die Pointersprünge werden mit NDF ausgeführt.

Pointerbereich A + B:

AU-4/AU-3 Pointer	0 bis 782
TU-3 Pointer	0 bis 764
TU-2 Pointer	0 bis 427
TU-12 Pointer	0 bis 139
TU-11 Pointer	0 bis 103

1.4.5 STM-1-Fehlermessungen (Anomalien)

Auswertung

Alle Fehler (Anomalien) werden parallel gezählt und gespeichert.

Anzeige

der Anomalien über LEDs:

CURRENT LED (rot) leuchtet, während die Anomalie anliegt.

HISTORY LED (gelb) leuchtet, wenn die Anomalie mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Anzeige der Fehler als Count- oder Ratiowert (äquivalente Bitfehlerrate). Bei der Berechnung des Ratiowertes werden für die Anomalien B1, B2, B3 und BIP-2 sowie MS-REI, HP-REI und LP-REI Korrekturformeln angewendet, die berücksichtigen, daß ein Mehrfachfehler im gleichen Bit zur Auslöschung des Fehlers führen kann.

Anomalie	LED
OOF-155	LOF/OOF
FAS-155	-
B1	B1/B2
B2	B1/B2
MS-REI	-
В3	В3
HP-REI	-
CRC-4	FAS/CRC
E-Bit	-
TSE	TSE
CODE	-

Tabelle TD-7 LED-Anzeigen der möglichen Anomalien (STM-1)

1.4.6 STM-1-Alarmerkennung (Defekte)

Auswertung

Alle anliegenden Alarme (Defekte) werden soweit wie möglich parallel ausgewertet und gespeichert. Die Speicherung erfolgt nur während eines gestarteten Meßintervalls.

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Defekt	LED
LOS	LOS
LOF-155	LOF/OOF
RS-TIM	-
MS-AIS	MS-AIS
MS-RDI	MS-RDI
AU-LOP	AU-LOP
AU-AIS	AU-AIS
HP-UNEQ	HP-UNEQ
HP-PLM	HP-PLM
HP-RDI	HP-RDI
HP-TIM	-
LSS	LSS

Tabelle TD-8 LED-Anzeigen der möglichen Defekte (STM-1)

1.4.7 Messung von AU- und TU-Pointeraktionen

Auswertung

Alle Pointer eines ausgewählten Pfades werden als absolute Werte dargestellt. Die Pointerbewegungen werden nach ihrer Richtung erfaßt und gezählt.

NDF (New Data Flag) wird erfaßt und gezählt.

Anzeige

von:

- Anzahl der Pointeroperationen getrennt für AU- und TU-Pointer: Inkrement, Dekrement, Summe Inkrement + Dekrement, Differenz Inkrement - Dekrement
- Pointeradresse
- · Anzahl der NDF-Ereignisse
- Korrespondierende Taktabweichung
- AU-NDF und TU-NDF können mit der LED-Anzeige (Frontplatte) angezeigt werden (Application Manager - Menü "Configuration" - LED Display ...):
 - die LED "AU-LOP/LOP-P" zeigt zusätzlich zur Meldung "AU-LOP" die Meldung "AU-NDF" an
 - die LED "TU-LOP/LOP-V" zeigt zusätzlich zur Meldung "TU-LOP" die Meldung "TU-NDF" an

Absolute Pointerwerte, Inkrement, Dekrement, Summe Inkrement + Dekrement und NDF werden in grafischer Histogramm-Darstellung mit einer wählbaren Auflösung von Sekunde, Minute, Stunde oder Tag angezeigt.

Ausdruck

Absolute Pointerwerte, Inkrement, Dekrement, Summe Inkrement + Dekrement und NDF werden mit einer Auflösung von 1 Sekunde in tabellarischer Form ausgedruckt.

1.4.8 VC-4 Path Overhead (POH), High Order

Standard Overhead

POH-Byte	Option 3035/90.01, Option 3035/90.04, Option 3035/90.06	Option 3035/90.02 und Option 3035/90.05	Option 3035/90.03
J1 (ASCII)			"VC-4 MAPPING" "VC-4 BULK"
B3 (hex)	Eingeblendet über Parity	-Bildung	
C2 (hex)	"02"	"04"	"12" bei Mapping "FE" bei Bulk
G1 (hex)	"00"		
F2 (hex)	"00"		
H4 (hex)	"FC", "FD", "FE", "FF" Sequenz über 4 Rahmen	"FF"	
	48-Byte-Sequenz nach G.709		
F3 (hex)	"00"		
K3 (hex)	"00"		
N1 (hex)	"00"		

Tabelle TD-9 Belegung des POH

Belegung der Bytes des VC-4 POH

- Statisches Byte: alle außer B3, H4
- Overhead Sequenz m, n, p: J1, C2, G1, F2, F3, K3, N1
- Trace Identifier: J1 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS: F2 (Byte)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): F2, K3, N1 (Byte)
- H4-Sequenz, schaltbar, 4/48-Byte

1.4.9 VC-3 Path Overhead (POH), High Order

Standard Overhead

POH-Byte		Option 3035/90.01, Option 3035/90.04 und Option 3035/90.06		Option 3035/90.02 und Option 3035/90.05		
	Meßkanäle	Füllkanäle	Meßkanäle	Füllkanäle		
J1 (ASCII)	"WG HP-TRACE"	"WG IDLE"	"VC-3 Mapping" "VC-3 Bulk"	"WG IDLE"		
B3 (hex)	Eingeblendet über F	Parity-Bildung				
C2 (hex)	"02"	"02"	"04" bei Mapping "FE" bei Bulk	"04"		
G1 (hex)	"00"	"00"				
F2 (hex)	"00"	"00"				
H4 (hex)	"FC", "FD", "FE", "F Sequenz über 4 Rahmen			"FF"		
	48-Byte-Sequenz na	48-Byte-Sequenz nach G.709]		
F3 (hex)	"00"	"00"				
K3 (hex)	"00"					
N1 (hex)	"00"					

Tabelle TD-10 Belegung des POH

Belegung der Bytes des VC-3 POH

- Statisches Byte: alle außer B3, H4
- Overhead Sequenz m, n, p: J1, C2, G1, F2, F3, K3, N1
- Trace Identifier: J1 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS: F2 (Byte)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): F2, K3, N1 (Byte)
- H4-Sequenz, schaltbar, 4/48-Byte

1.4.10 Auswertung des Section Overhead (SOH) und VC-4/VC-3 Path Overhead (POH)

Anzeige

des kompletten SOH und POH	hexadezimal
der Trace Identifier J0, J1	ASCII. Klartext

Auswertung

Bitfehlermessung

mit Quasi-Zufallsfolge PRBS 11	E1, F1, E2, F2 (Byte)
mit Quasi-Zufallsfolge PRBS 11	D1 bis D3, D4 bis D12 (Byte-Gruppe)

Ausgabe

1.5 Mapping C-12 (2 Mbit/s in STM-1, AU-3/AU-4)

Option: BN 3035/90.01

Mapping-Struktur: AU-4

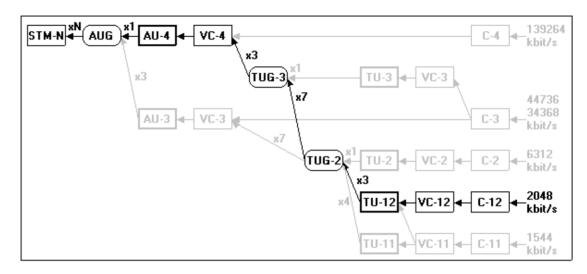


Bild TD-9 Mapping-Struktur: 2 Mbit/s \rightarrow C-12 \rightarrow AU-4 \rightarrow STM-1

Mapping-Struktur: AU-3

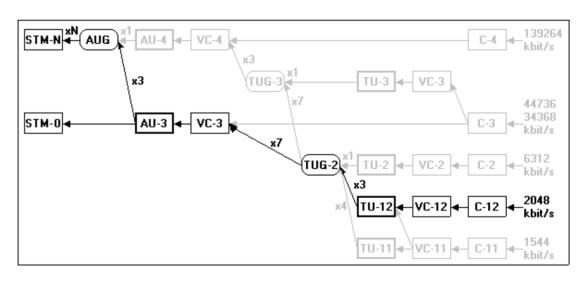


Bild TD-10 Mapping-Struktur: 2 Mbit/s \rightarrow C-12 \rightarrow AU-3 \rightarrow STM-1 Mapping-Struktur: 2 Mbit/s \rightarrow C-12 \rightarrow AU-3 \rightarrow STM-0; Option 3035/90.13 erforderlich

Mapping-Verfahren

Folgende Modi stehen zur Verfügung:

- Asynchroner Betrieb
- Bytesynchroner Betrieb (floating)

1.5.1 Belegung des VC-12 Path Overhead

POH-Byte	Meßkanal	Füllkanäle
V5 (bin)		
LP-BIP (Bit 1-2)	Eingeblendet über Parity-Bildung	Eingeblendet über Parity-Bildung
LP-REI (Bit 3)	"0"	"0"
LP-RFI (Bit 4)	"0"	"O"
Path Label (Bit 5-7)	"010" bei asynchron "100" bei bytesynchron "110" bei Bulk	"010" bei asynchron "100" bei bytesynchron
LP-RDI (Bit 8)	"0"	"0"
J2 (ASCII)	"WG LP-TRACE"	"WG IDLE"
N2 (hex)	"00"	"00"
K4 (hex)	"00"	"00"

Tabelle TD-11 Belegung des VC-12 POH (Standard Overhead)

Belegung der Meßkanal-Bytes (VC-12)

- Statisches Byte: alle außer Bit 1-2 von V5
- Overhead Sequenz m, n, p: J2, N2, K4
- Trace Identifier: J2 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): N2

Belegung der Füllkanal-Bytes (VC-12)

Fix, nicht editierbar (siehe Tab. TD-11).

1.5.2 VC-12-Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.4.2, Seite TD-6 beschrieben werden, können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate		
BIP-2 ¹	ja	2E-4 bis 1E-10		
LP-REI	ja	2E-4 bis 1E-10		
Statische Fehlereinblendung, editierbar über eine 2-Bit-Maske (x = don't care, 1 = Fehlereinblendung)				

Tabelle TD-12 Zusätzlich einstellbare Anomalien (VC-12)

Die Fehlereinblendung bezieht sich auf den gewählten Meßkanal.

1.5.3 VC-12-Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in Kap. 1.4.3, Seite TD-7 beschrieben werden, können folgende Defekte erzeugt werden:

Defekt	Test Sensor-Funktion	Sensor-Schwellen	
	Ein/Aus	M in N	It1I It2I
TU-LOM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TU-LOP	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TU-AIS	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-UNEQ	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-PLM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-RDI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-TIM	ja	-	-
LP-RFI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s

Tabelle TD-13 Zusätzlich einstellbare Defekte (VC-12)

Die Alarmerzeugung bezieht sich auf den gewählten Meßkanal.

1.5.4 VC-12-Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 1.4.5, Seite TD-11 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
LP-BIP	LP-BIP
LP-REI	-

Tabelle TD-14 LED-Anzeigen für zusätzliche Anomalien (VC-12)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.5.5 VC-12-Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 1.4.6, Seite TD-12 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
TU-LOM	TU-LOM
TU-LOP	TU-LOP
TU-AIS	TU-AIS
LP-UNEQ	LP-UNEQ
LP-PLM	LP-PLM
LP-RDI	LP-RDI
LP-TIM	-
LP-RFI	-

Tabelle TD-15 LED-Anzeigen für zusätzliche Defekte (VC-12)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.5.6 Auswertung des VC-12 Path Overhead

Anzeige

- des kompletten POH (hexadezimal)
- des Trace Identifier: J2 (ASCII, Klartext)

Ausgabe

• über DCC/ECC-Schnittstelle (V.11): N2

1.6 Mapping C-3 (34/45 Mbit/s in STM-1, AU-3/AU-4)

Option: BN 3035/90.02 für 34 Mbit/s Option: BN 3035/90.05 für 45 Mbit/s

Mapping-Struktur: AU-4

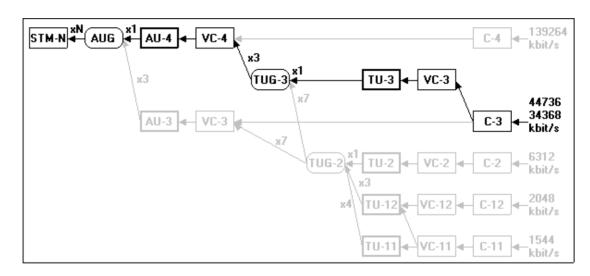


Bild TD-11 Mapping-Struktur: 34/45 Mbit/s \rightarrow C-3 \rightarrow AU-4 \rightarrow STM-1

Mapping-Struktur: AU-3

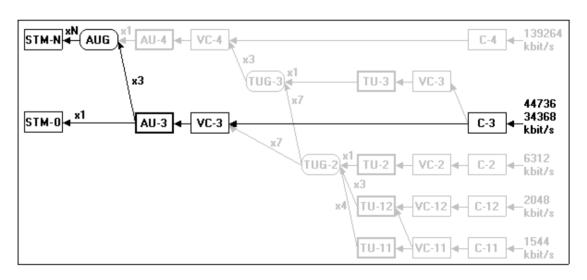


Bild TD-12 Mapping-Struktur: 34/45 Mbit/s \rightarrow C-3 \rightarrow AU-3 \rightarrow STM-1 Mapping-Struktur: 34/45 MBit/s \rightarrow C-3 \rightarrow AU-3 \rightarrow STM-0; Option 3035/90.12 erforderlich

1.6.1 Belegung des VC-3 Path Overhead (Low Order)

POH-Byte	Meßkanal	Füllkanäle
J1 (ASCII)	"WG TRACE"	"WG IDLE"
B3 (hex)	Eingeblendet über Parity-Bildung	
C2 (hex)	"04" bei Mapping "FE" bei Bulk	"04"
G1 (hex)	"00"	
F2 (hex)	"00"	
H4 (hex)	"FF"	
Z3 (hex)	"00"	
K3 (hex)	"00"	
N1 (hex)	"00"	

Tabelle TD-16 Belegung des VC-3 POH (Standard Overhead)

Belegung der Meßkanal-Bytes (VC-3)

- · Statisches Byte: alle außer B3, H4
- Overhead Sequenz m, n, p: J1, C2, G1, F2, F3, K3, N1
- Trace Identifier: J1 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS 11: F2 (Byte)
- Dynamisch über V.11-Schnittstelle (V.11): F2, K3, N1 (Byte)

Belegung der Füllkanal-Bytes

Fix, nicht editierbar (siehe Tab. TD-16).

1.6.2 VC-3-Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.4.2, Seite TD-6 beschrieben werden, können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate
LP-B3 ¹	ja	2E-4 bis 1E-10
LP-REI	ja	2E-4 bis 1E-10
1 Statische Fehlereinblendung, editierbar über eine 8-Bit-Maske (x = don't care, 1 = Fehlereinblendung)		

Tabelle TD-17 Zusätzlich einstellbare Anomalien (VC-3)

Die Fehlereinblendung bezieht sich auf den gewählten Meßkanal.

1.6.3 VC-3-Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in Kap. 1.4.3, Seite TD-7 beschrieben werden, können folgende Defekte erzeugt werden:

Defekt	Test Sensor- Funktion	Sensor-Schwellen	
	Ein/Aus	M in N	It1I It2I
TU-LOP	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TU-AIS	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-UNEQ	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-PLM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-RDI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-TIM	ja	-	-

Tabelle TD-18 Zusätzlich einstellbare Defekte (VC-3)

Die Alarmerzeugung bezieht sich auf den gewählten Meßkanal.

1.6.4 VC-3-Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 1.4.5, Seite TD-11 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
LP-B3	LP-BIP
LP-REI	-

Tabelle TD-19 LED-Anzeigen für zusätzliche Anomalien (VC-3)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.6.5 VC-3-Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 1.4.6, Seite TD-12 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
TU-LOP	TU-LOP
TU-AIS	TU-AIS
LP-UNEQ	LP-UNEQ
LP-PLM	LP-PLM
LP-RDI	LP-RDI
LP-TIM	-

Tabelle TD-20 LED-Anzeigen für zusätzliche Defekte (VC-3)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.6.6 Auswertung des VC-3 Path Overhead

Anzeige

- des kompletten POH (hexadezimal)
- des Trace Identifiers: J1 (ASCII, Klartext)

Ausgabe

- Bitfehlermessung mit Quasizufallsfolge PRBS 11: F2 (Byte)
- über DCC/ECC-Schnittstelle (V.11): F2, K3, N1 (Byte)

1.7 Mapping C-4 (140 Mbit/s in STM-1/STS-3c)

Option BN 3035/90.03

STS-3c siehe auch

Bedienungsanleitung "STS-1 Mappings", Kapitel "Mappings STS-3c SPE".

Mapping-Struktur

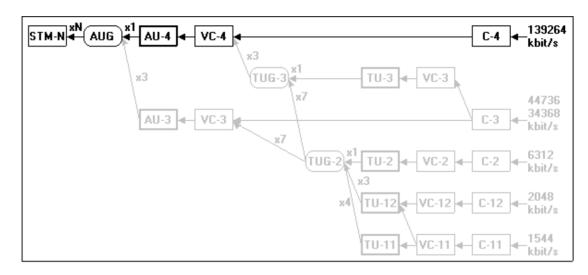


Bild TD-13 Mapping-Struktur: 140 Mbit/s \rightarrow AU-4 \rightarrow STM-1

Die Mapping-Eigenschaften sind in Kap. 1.4, Seite TD-5 beschrieben.

1.8 Mapping C-11 (1,5 Mbit/s in STM-1, AU-3/AU-4, TU-11/TU-12)

Option BN 3035/90.04

Mapping-Struktur: AU-3, TU-11

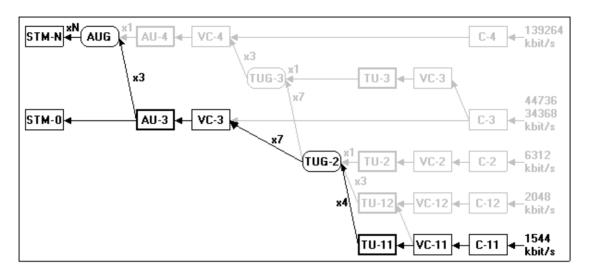


Bild TD-14 Mapping-Struktur: 1,5 Mbit/s \rightarrow C-11 \rightarrow TU-11 \rightarrow AU-3 \rightarrow STM-1 Mapping-Struktur: 1,5 Mbit/s \rightarrow C-11 \rightarrow TU-11 \rightarrow AU-3 \rightarrow STM-0; Option 3035/90.10 erforderlich

Mapping-Struktur: AU-3, TU-12

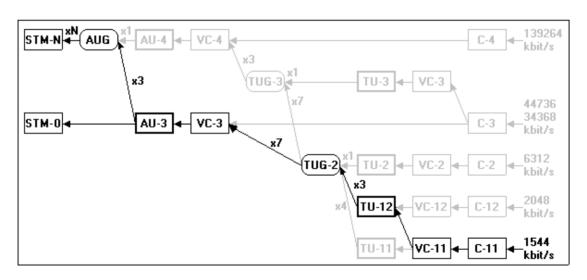


Bild TD-15 Mapping-Struktur: 1,5 Mbit/s \rightarrow C-11 \rightarrow TU-12 \rightarrow AU-3 \rightarrow STM-1 Mapping-Struktur: 1,5 Mbit/s \rightarrow C-11 \rightarrow TU-12 \rightarrow AU-3 \rightarrow STM-0; Option 3035/90.10 erforderlich

Mapping-Verfahren

Folgende Modi stehen zur Verfügung:

- Asynchroner Betrieb
- Bytesynchroner Betrieb (floating); nur TU-11

Mapping-Struktur: AU-4, TU-11

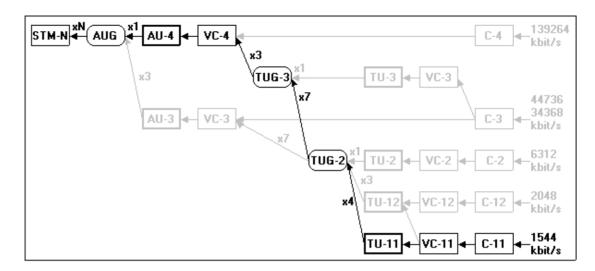


Bild TD-16 Mapping-Struktur: 1,5 Mbit/s \rightarrow C-11 \rightarrow TU-11 \rightarrow AU-4 \rightarrow STM-1

Mapping-Struktur: AU-4, TU-12

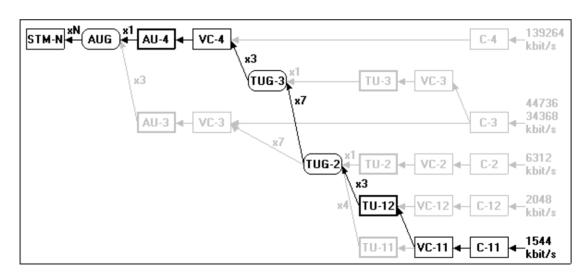


Bild TD-17 Mapping-Struktur: 1,5 Mbit/s \rightarrow C-11 \rightarrow TU-12 \rightarrow AU-4 \rightarrow STM-1

Mapping-Verfahren

Folgende Modi stehen zur Verfügung:

- Asynchroner Betrieb
- Bytesynchroner Betrieb (floating)

1.8.1 Belegung des VC-11 Path Overhead

POH-Byte	Meßkanal	Füllkanäle
V5 (bin)		
LP-BIP (Bit 1-2)	Eingeblendet über Parity-Bildung	Eingeblendet über Parity-Bildung
LP-REI (Bit 3)	"O"	"O"
LP-RFI (Bit 4)	"O"	"O"
Path Label (Bit 5-7)	"010" bei asynchron "100" bei bytesynchron "110" bei Bulk	"010" bei asynchron "100" bei bytesynchron
LP-RDI (Bit 8)	"0"	"0"
J2 (ASCII)	"WG LP-TRACE"	"WG IDLE"
N2 (hex)	"00"	"00"
K4 (hex)	"00"	"00"

Tabelle TD-21 Belegung des VC-11 POH (Standard Overhead)

Belegung der Meßkanal-Bytes (VC-11)

- Statisches Byte: alle außer Bit 1-2 von V5
- Overhead Sequenz m, n, p: J2, N2, K4
- Trace Identifier: J2 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): N2

Belegung der Füllkanal-Bytes (VC-11)

Fix, nicht editierbar (siehe Tab. TD-21).

1.8.2 VC-11-Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.4.2, Seite TD-6 beschrieben werden, können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate
BIP-2 ¹	ja	2E-4 bis 1E-10
LP-REI ja 2E-4 bis 1E-10		2E-4 bis 1E-10
1 Statische Fehlereinblendung, editierbar über eine 2-Bit-Maske (x = don't care, 1 = Fehlereinblendung)		

Tabelle TD-22 Zusätzlich einstellbare Anomalien (VC-11)

Die Fehlereinblendung bezieht sich auf den gewählten Meßkanal.

1.8.3 VC-11-Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in Kap. 1.4.3, Seite TD-7 beschrieben werden, können folgende Defekte erzeugt werden:

Defekt	Test Sensor- Funktion	Sensor-Schwellen	
	Ein/Aus	M in N	It1I It2I
TU-LOM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TU-LOP	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TU-AIS	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-UNEQ	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-PLM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-RDI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-TIM	ja	-	-
LP-RFI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s

Tabelle TD-23 Zusätzlich einstellbare Defekte (VC-11)

Die Alarmerzeugung bezieht sich auf den gewählten Meßkanal.

1.8.4 VC-11-Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 1.4.5, Seite TD-11 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
LP-BIP	LP-BIP
LP-REI	-

Tabelle TD-24 LED-Anzeigen der zusätzlichen Anomalien (VC-11)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.8.5 VC-11-Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 1.4.6, Seite TD-12 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
TU-LOM	TU-LOM
TU-LOP	TU-LOP
TU-AIS	TU-AIS
LP-UNEQ	LP-UNEQ
LP-PLM	LP-PLM
LP-RDI	LP-RDI
LP-TIM	-
LP-RFI	-

Tabelle TD-25 LED-Anzeigen für zusätzliche Defekte (VC-11)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.8.6 Auswertung des VC-11 Path Overhead

Anzeige

- des kompletten POH (hexadezimal)
- des Trace Identifier: J2 (ASCII, Klartext)

Ausgabe

• über DCC/ECC-Schnittstelle (V.11): N2

1.9 Mapping C-2 (6,3 Mbit/s in STM-1, AU-3/AU-4, TU-2)

Option BN 3035/90.06

Mapping-Struktur: AU-3, TU-2

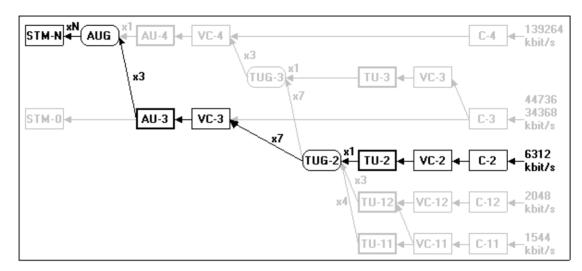


Bild TD-18 Mapping-Struktur: 6,3 Mbit/s \rightarrow C-2 \rightarrow TU-2 \rightarrow AU-3 \rightarrow STM-1

Mapping-Verfahren

Folgender Modus steht zur Verfügung:

Asynchroner Betrieb

Mapping-Struktur: AU-4, TU-2

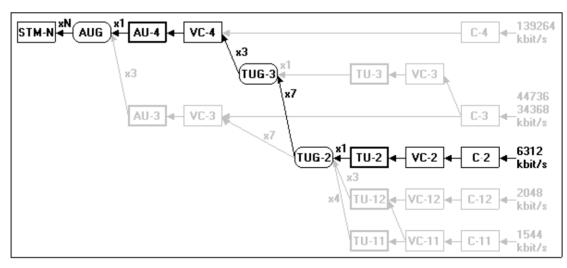


Bild TD-19 Mapping-Struktur: 6,3 Mbit/s \rightarrow C-2 \rightarrow TU-2 \rightarrow AU-4 \rightarrow STM-1

Mapping-Verfahren

Folgender Modus steht zur Verfügung:

• Asynchroner Betrieb

1.9.1 Belegung des VC-2 Path Overhead

POH-Byte	Meßkanal	Füllkanäle
V5 (bin)		
LP-BIP (Bit 1-2)	Eingeblendet über Parity-Bildung	Eingeblendet über Parity-Bildung
LP-REI (Bit 3)	"0"	"O"
LP-RFI (Bit 4)	"0"	"O"
Path Label (Bit 5-7)	"010" bei asynchron "110" bei Bulk	"010" bei asynchron
LP-RDI (Bit 8)	"0"	"0"
J2 (ASCII)	"WG LP-TRACE"	"WG IDLE"
N2 (hex)	"00"	"00"
K4 (hex)	"00"	"00"

Tabelle TD-26 Belegung des VC-2 POH (Standard Overhead)

Belegung der Meßkanal-Bytes (VC-2)

- Statisches Byte: alle außer Bit 1-2 von V5
- Overhead Sequenz m, n, p: J2, N2, K4
- Trace Identifier: J2 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): N2

Belegung der Füllkanal-Bytes (VC-2)

Fix, nicht editierbar (siehe Tab. TD-26).

1.9.2 VC-2-Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.4.2, Seite TD-6 beschrieben werden, können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate	
BIP-2 ¹	ja	2E-4 bis 1E-10	
LP-REI ja		2E-4 bis 1E-10	
1 Statische Fehlereinblendung, editierbar über eine 2-Bit-Maske (x = don't care, 1 = Fehlereinblendung)			

Tabelle TD-27 Zusätzlich einstellbare Anomalien (VC-2)

Die Fehlereinblendung bezieht sich auf den gewählten Meßkanal.

1.9.3 VC-2-Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in Kap. 1.4.3, Seite TD-7 beschrieben werden, können folgende Defekte erzeugt werden:

Defekt	Test Sensor- Funktion	Sensor-Schwellen	
	Ein/Aus	M in N	It1I It2I
TU-LOM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TU-LOP	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TU-AIS	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-UNEQ	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-PLM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-RDI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LP-TIM	ja	-	-
LP-RFI	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s

Tabelle TD-28 Zusätzlich einstellbare Defekte (VC-2)

Die Alarmerzeugung bezieht sich auf den gewählten Meßkanal.

1.9.4 VC-2-Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 1.4.5, Seite TD-11 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
LP-BIP	LP-BIP
LP-REI	-

Tabelle TD-29 LED-Anzeigen der zusätzlichen Anomalien (VC-2)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.9.5 VC-2-Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 1.4.6, Seite TD-12 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

LED
TU-LOM
TU-LOP
TU-AIS
LP-UNEQ
LP-PLM
LP-RDI
-
-

Tabelle TD-30 LED-Anzeigen für zusätzliche Defekte (VC-2)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.9.6 Auswertung des VC-2 Path Overhead

Anzeige

- des kompletten POH (hexadezimal)
- des Trace Identifier: J2 (ASCII, Klartext)

Ausgabe

• über DCC/ECC-Schnittstelle (V.11): N2

1.10 Füllkanalbelegung

Mapping-Struktur wie im Meßkanal, Testmuster PRBS11.

2 Drop&Insert/Through Mode (Durchgangsbetrieb)

Option: BN 3035/90.20

2.1 Funktionen

Diese Option bietet folgende Funktionen für alle im ANT-20 enthaltenen Mapping-Optionen.

Drop&Insert

Sender und Empfänger arbeiten unabhängig als Mapper/Demapper. Ein wählbarer Zubringer des empfangenen Signals wird ausgegeben. Ein extern zugeführter Zubringer wird in das Sendesignal eingefügt.

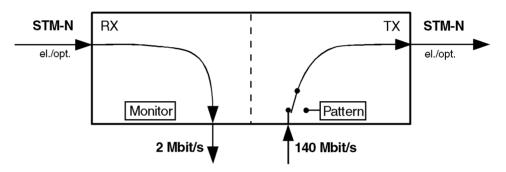


Bild TD-20 Drop & Insert: Sender und Empfänger arbeiten unabhängig voneinander

Zur Ausgabe und zum Einfügen von Zubringersignalen steht je ein unsymmetrischer Digitalausund -eingang am Grundgerät zur Verfügung (siehe Kap. 2.2.1, Seite TD-38 und Kap. 2.3.1, Seite TD-39).

Zusätzlich verfügt das Grundgerät über je einen symmetrischen Ausgang [13] und Eingang [12] für die Ausgabe und das Einfügen von Zubringersignalen über symmetrische Schnittstellen.

Through Mode (Durchgangsbetrieb)

Das empfangene Signal wird zum Sender geschleift (Durchgangsbetrieb). Ein Zubringersignal kann ausgegeben werden (Drop).

Der ANT-20 kann im Durchgangsbetrieb auch als Signalmonitor eingesetzt werden, ohne daß der Signalinhalt beeinflußt wird.

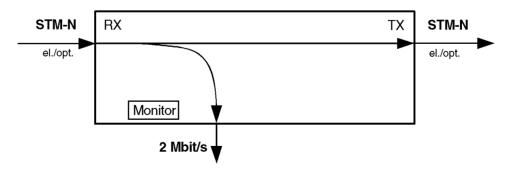


Bild TD-21 Durchgangsbetrieb: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "PDH MUX/DEMUX" und "M13 MUX/DEMUX", BN 3035/90.30 bis BN 3035/90.32 bietet der ANT-20 Zugang zu den Zubringerkanälen innerhalb der "MUX/DEMUX"-Kette (mit Ausnahme von DS2). Dies gilt auch, wenn das PDH-Signal in einem Container übertragen wird.

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

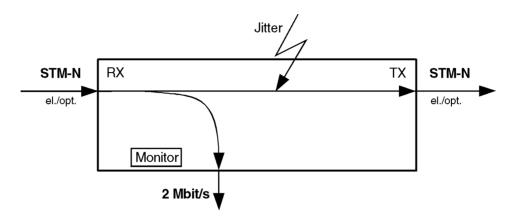


Bild TD-22 Through Mode: Durchgangssignal verjittert

Im Durchgangsbetrieb können im SOH Anomalien eingeblendet werden oder Manipulationen an den Bytes vorgenommen werden.

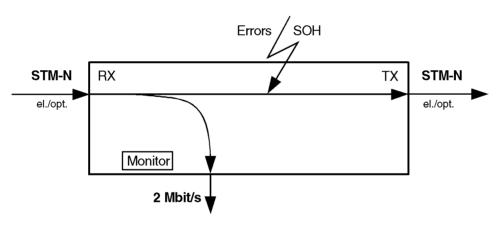


Bild TD-23 Through Mode: Fehlereinblendungen im SOH

2.1.1 Takterzeugung

Drop&Insert

siehe "Technische Daten" des Grundgeräts

Through Mode

Im Through Mode steht die Takterzeugung fest auf "abgeleitet vom Empfangstakt". Eine Verstimmung des Sendesignals ist in dieser Betriebsart nicht zulässig (siehe auch "Technische Daten" des Grundgeräts).

2.1.2 Overhead-Erzeugung

Drop&Insert

siehe Kap. 1.4.1, Seite TD-5

Through Mode

Für alle Bytes außer den Bytes B1, B2 und M1 ist zu den in Kap. 1.4.1, Seite TD-5 beschriebenen Funktionen die Funktion "von Rx" einstellbar.

2.1.3 Fehlereinblendung (Anomalien)

Drop&Insert

siehe Kap. 1.4.2, Seite TD-6

Through Mode

Einblendung der Anomalien in die Bytes B1, B2 und MS-REI. Grenzen der Einblendung (siehe Kap. 1.4.2, Seite TD-6).

2.1.4 Alarmerzeugung (Defekte)

Drop&Insert

siehe Kap. 1.4.3, Seite TD-7

Through Mode

Keine direkte Alarmerzeugung möglich.

Alarme (Defekte) im SOH können durch die Manipulation der Bytes erzeugt werden.

2.1.5 Pointererzeugung

Drop&Insert

siehe Kap. 1.4.4, Seite TD-8

Through Mode

Der Pointer der Empfangsseite wird unverändert wieder gesendet.

2.1.6 Messungen

Bei den Messungen gibt es keine Einschränkungen. Siehe Kap. 1.4.5, Seite TD-11 bis Kap. 1.4.10, Seite TD-16.

2.2 Signalausgänge

2.2.1 Signalausgang "AUXILIARY" [11], elektrisch

Aı	schluß unsymmetrisch, (koaxial)
В	ichseBNC
In	nenwiderstand des Signalausgangs \ldots 75 Ω
М	ax. zulässiger Scheitelwert der Fremdspannung±5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgangsspannung
E4	139,264	СМІ	± 0,5 V
DS3	44,736	B3ZS	± 1,0 V
E3	34,368	HDB3	
E2	8,448	HDB3	± 2,37 V
DS2	6,312	B8ZS	± 2,0 V
E1	2,048	HDB3	± 2,37 V
DS1	1,544	B8ZS	
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-31 Kenngrößen des Signalausgangs "AUXILIARY" [11], elektrisch

2.2.2 Signalausgang "LINE/AUXILIARY" [13], elektrisch

nschluß
uchseLemo SA (Bantam)
nenwiderstand des Signalausgangs ,048 Mbit/s
lax. zulässiger Scheitelwert der Fremdspannung±5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgangsspannung
E1	2,048	HDB3	± 3,0 V
DS1	DSX-1 compatible		
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-32 Kenngrößen des Signalausgangs "LINE/AUXILIARY" [13], elektrisch

Der symmetrische Ausgang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Ausgang verwendet.

2.3 Signaleingänge

2.3.1 Signaleingang "AUXILIARY" [10], elektrisch

Anschlußunsymmetrisch, (koaxial)
Buchse
Innenwiderstand des Signaleingangs
Max. zulässiger Frequenzoffset
Eingangsspannungsbereich 0 dB Dämpfung bezogen auf Nennpegel
Max. zulässiger Scheitelwert der Eingangsspannung ± 5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung
E4	139,264	СМІ	1,0 V ±10 %
DS3	44,736	B3ZS	1,0 V ±10 %
E3	34,368	HDB3	
E2	8,448	HDB3	2,37 V ±10 %
DS2	6,312	B8ZS	2,0 V ±10 %
E1	2,048	HDB3	2,37 V ±10 %
DS1	1,544	B8ZS	
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-33 Kenngrößen des Signaleingangs "AUXILIARY" [10], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

2.3.2 Signaleingang "LINE/AUXILIARY" [12], elektrisch

Anschluß			
BuchseLemo SA (Bantam)			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Max. zulässiger Frequenzoffset			
Max. Anzahl aufeinanderfolgender Nullen bei Code = AMI			
Max. zulässiger Scheitelwert der Eingangsspannung \pm 5 V			
Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung
E1	2,048	HDB3	3,0 V ±10 %
DS1	1,544	B8ZS	

Tabelle TD-34 Kenngrößen des Signaleingangs "LINE/AUXILIARY" [12], elektrisch

Statusanzeige "LOS" (Loss of Signal)

Die Bitraten sind abhängig von den Mapping-Optionen.

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

Der symmetrische Eingang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Eingang verwendet.

Technische Daten STS-1-Mappings

Diese technischen Daten umfassen die Optionen:

SONET-Mappings

STS-1-Mapping für ANSI-Zubringer

Drop&Insert
VT2 SPE/SUB-STM-1 (2 Mbit/s in STS-1)
STS-1-Mapping für ETSI-Zubringer
STS-1 SPE (45 Mbit/s in STS-1)
VT6 (6,3 Mbit/s, ungerahmt, in STS-1)
VT1.5 SPE/SUB-STM-1 (1,5 Mbit/s in STS-1)

1 STS-1-Mappings

1.1 Allgemeines

STS-1- und STS-3-Signale

Die STS-1- und STS-3-Signale werden generiert und ausgewertet nach den Normen Bellcore GR-253 und ANSI T1.105.

Das STS-3-Signal besteht aus einem STS-1-Zubringer mit einer ausgewählten Payload und zwei nicht belegten STS-1-Zubringern.

Mapping/Demapping

Ein wählbares STM-S-Mapping ist im Grundgerät enthalten. Weitere Mappings können beliebig ergänzt werden.

Inhalt der Container:

- Gerahmte oder ungerahmte asynchrone Payload in einem wählbaren Container.
- Belegung eines gewählten Containers mit einem Testmuster ohne Stopfbits (Bulk-Signal).

Drop&Insert

In Verbindung mit den Mapping-Optionen gibt es eine zusätzliche Drop&Insert-Option (BN 3035/90.20), mit der Zubringersignale (an Buchsen) ausgegeben und eingefügt werden können.

1.2 Kanalnumerierung der Zubringer

VT1.5-Kanalnummern

VT1.5#	Gruppe #/VT #	Spalte ¹ #s	VT1.5#	Gruppe #/VT #	Spalte ¹ #s
1	1, 1	2, 31, 60	15	1, 3	16, 45, 74
2	2, 1	3, 32, 61	16	2, 3	17, 46, 75
3	3, 1	4, 33, 62	17	3, 3	18, 47, 76
4	4, 1	5, 34, 63	18	4, 3	19, 48, 77
5	5, 1	6, 35, 64	19	5, 3	20, 49, 78
6	6, 1	7, 36, 65	20	6, 3	21, 50, 79
7	7, 1	8, 37, 66	21	7, 3	22, 51, 80
8	1, 2	9, 38, 67	22	1, 4	23, 52, 81
9	2, 2	10, 39, 68	23	2, 4	24, 53, 82
10	3, 2	11, 40, 69	24	3, 4	25, 54, 83
11	4, 2	12, 41, 70	25	4, 4	26, 55, 84
12	5, 2	13, 42, 71	26	5, 4	27, 56, 85
13	6, 2	14, 43, 72	27	6, 4	28, 57, 86
14	7, 2	15, 44, 73	28	7, 4	29, 58, 87

¹ Spalte 1 = STS POH Spalte 30, 59 = fest gestopft

Tabelle TD-35 VT1.5-Kanalnummern

VT2-Kanalnummern

VT2#	Gruppe #/VT #	Spalte ¹ #s	VT2#	Gruppe #/VT #	Spalte ¹ #s
1	1, 1	2, 23, 45, 67	12	5, 2	13, 35, 56, 78
2	2, 1	3, 24, 46, 68	13	6, 2	14, 36, 57, 79
3	3, 1	4, 25, 47, 69	14	7, 2	15, 37, 58, 80
4	4, 1	5, 26, 48, 70	15	1, 3	16, 38, 60, 81
5	5, 1	6, 27, 49, 71	16	2, 3	17, 39, 61, 82
6	6, 1	7, 28, 50, 72	17	3, 3	18, 40, 62, 83
7	7, 1	8, 29, 51, 73	18	4, 3	19, 41, 63, 84
8	1, 2	9, 31, 52, 74	19	5, 3	20, 42, 64, 85
9	2, 2	10, 32, 53, 75	20	6, 3	21, 43, 65, 86
10	3, 2	11, 33, 54, 76	21	7, 3	22, 44, 66, 87
11	4, 2	12, 34, 55, 77	-	-	-
1 Snalte	1 = STS POH				

¹ Spalte 1 = STS POH Spalte 30, 59 = fest gestopft

Tabelle TD-36 VT2-Kanalnummern

VT6-Kanalnummern

VT6#	Gruppe #/VT #	Spalte ¹ #s
1	1, 1	2, 9, 16, 23, 31, 38, 45, 52, 60, 67, 74, 81
2	2, 1	3, 10, 17, 24, 32, 39, 46, 53, 61, 68, 75, 82
3	3, 1	4, 11, 18, 25, 33, 40, 47, 54, 62, 69, 76, 83
4	4, 1	5, 12, 19, 26, 34, 41, 48, 55, 63, 70, 77, 84
5	5, 1	6, 13, 20, 27, 35, 42, 49, 56, 64, 71, 78, 85
6	6, 1	7, 14, 21, 28, 36, 43, 50, 57, 65, 72, 79, 86
7	7, 1	8, 15, 22, 29, 37, 44, 51, 58, 66, 73, 80, 87
	= STS-1 POH), 59 = fest gestopft	

Tabelle TD-37 VT6-Kanalnummern

1.3 Scrambling/Descrambling

Das Scrambling/Descrambling des STS-N-Signals geschieht nach Bellcore GR-253 und ANSI T1.105.

1.4 Overhead-Erzeugung

1.4.1 Transport Overhead (TOH)

Standard Overhead, STS-1 (hex)

тон					
	1	2	3		
1	A1	A2	J0		
	F6	28	01		
2	B1	E1	F1		
	XX	00	00		
3	D1	D2	D3		
	00	00	00		
4	H1	H2	H3		
	60	00	00		
5	B2	K1	K2		
	XX	00	00		
6	D4	D5	D6		
	00	00	00		
7	D7	D8	D9		
	00	00	00		
8	D10	D11	D12		
	00	00	00		
9	S1	M0	E2		
	00	00	00		

Tabelle TD-38 Belegung des TOH, STS-1

Standard Overhead, STS-3 (hex), STS-3c

	тон					•				
	1	2	3	4	5	6	7	8	9	
1	A1	A1	A1	A2	A2	A2	J0	_		
	F6	F6	F6	28	28	28	01	02	03	
2	B1		_	E1	_	_	F1	_	_	
	XX	00	00	00	00	00	00	00	00	
3	D1		_	D2	_	_	D3	_	_	
	00	00	00	00	00	00	00	00	00	
4a	H1	H1	H1	H2	H2	H2	НЗ	НЗ	H3	bei STS-3
	60	60	60	00	00	00	00	00	00	
4b	H1	Υ	Υ	H2	_	_	НЗ	НЗ	H3	bei STS-3c
	60	93	93	00	FF	FF	00	00	00	
5	B2	B2	B2	K1	_	_	K2	_	_	
	XX	XX	XX	00	00	00	00	00	00	
6	D4		_	D5	_	_	D6			
	00	00	00	00	00	00	00	00	00	
7	D7		_	D8	_	_	D9	_	_	
	00	00	00	00	00	00	00	00	00	
8	D10		_	D11	_		D12	_	_	
	00	00	00	00	00	00	00	00	00	
9	S1	Z1	Z1	Z2	Z2	M1	E2	_		
	00	00	00	00	00	00	00	00	00	

Tabelle TD-39 Belegung des TOH, STS-3

XX: Eingeblendet über Parity-Bildung (B1, B2)

H1 und H2 sind abhängig von der eingestellten Pointer-Adresse (dargestellt Pointer-Adresse = 0), H3 davon, ob eine Pointer-Aktion stattfindet.

Belegung der TOH-Bytes

- Statisches Byte: alle außer B1, B2, H1, H2, H3
- Overhead Sequenz m, n, p: alle außer B1, B2, H1, H2, H3
- Dynamisch mit der Quasi-Zufallsfolge PRBS11: E1, F1, E2 (Byte)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS11: D1 bis D3, D4 bis D12 (Byte-Gruppe)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): E1, F1, E2 (Byte)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): D1 bis D3, D4 bis D12, K1 bis K2 (Byte-Gruppe)

1.4.2 STS-N-Fehlereinblendung (Anomalien)

Bei der Auslöseart Fehlerhäufigkeit (Rate) wird eine Bitfehlerrate eingeblendet.

Anomalie	Single	Rate ¹	Burst m, n (Rahmen)
FAS	ja	2E-3 bis 1E-10	m = 1 bis 196000
B1	ja	2E-4 bis 1E-10	m = 1 bis 196000
B2	ja	2E-3 bis 1E-10	m = 1 bis 196000
REI-L	ja	2E-3 bis 1E-10	m = 1 bis 196000
B3 ²	ja	2E-4 bis 1E-10	m = 1 bis 196000
REI-P	ja	2E-4 bis 1E-10	m = 1 bis 196000
TSE	ja	1E-2 bis 1E-8	-
BPV (Codefehler)	ja	-	-

¹ Mantisse: 1 bis 9 (nur 1 bei TSE), Exponent: -1 bis -10 (Ganzzahlen)

Tabelle TD-40 Einstellbare Fehlerarten (Anomalien) mit Auslöseart (STS-N)

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

² Statische Fehlereinblendung, editierbar über eine 8-Bit-Maske (x = don't care, 1 = Fehlereinblendung)

1.4.3 STS-N-Alarmerzeugung (Defekte)

Defekt	Test Sensor-Funktion	Test Sensor-Schw	ellen		
	Ein/Aus	M in N	t1 t2		
LOS ¹	ja	M = 800 bis 7200 N = 1600 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
LOF	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
TIM-L	ja	-	-		
AIS-L	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
RDI-L	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
LOP-P	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
AIS-P	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
UNEQ-P	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
PLM-P	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
RDI-P	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
TIM-P	ja	-	-		
PDI-P	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s oder t1 = 0,5 bis 250 ms t2 = 1 bis 8000 ms		
1 nur in Verbindung mit einer optischen Schnittstelle					

Tabelle TD-41 Einstellbare Defekte (STS-N)

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

1.4.4 Erzeugen von Pointeraktionen

Stimulation

Pointersequenzen

auf allen Pointerebenen nach ANSI T1.105.03

n: 1 bis 2000

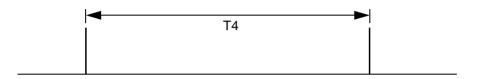


Bild TD-24 Perodische (Einzel-/Mehrfach-) Pointer gleicher Polarität

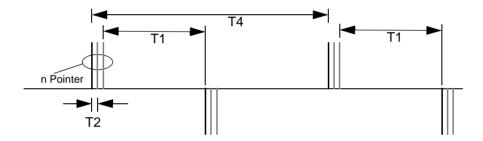


Bild TD-25 Periodische (Einzel-/Mehrfach-) Pointer unterschiedlicher Polarität

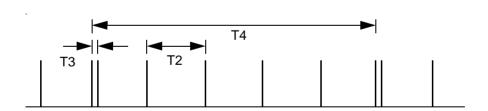


Bild TD-26 Periodische Pointer mit einem Doppel-Pointer

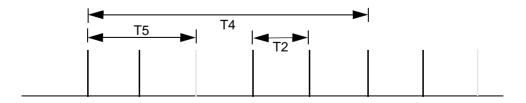


Bild TD-27 Periodische Pointer mit einem fehlenden Pointer

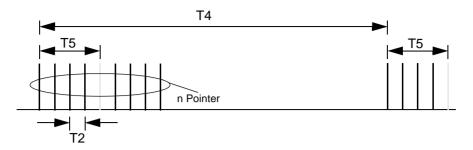


Bild TD-28 Pointer-Burst mit fehlenden Pointern

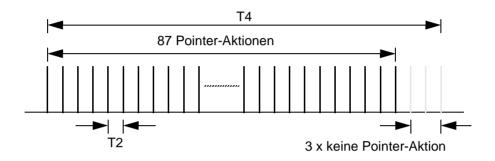


Bild TD-29 "87-3"-Sequenz

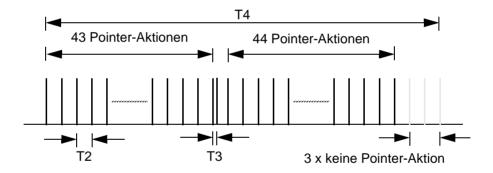


Bild TD-30 "43-44"-Sequenz mit Doppel-Pointer

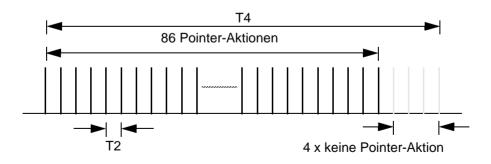


Bild TD-31 "86-4"-Sequenz mit fehlendem Pointer

Pointersprünge

Pointersprung vom Pointerwert A auf Pointerwert B (auch Setzen eines neuen Pointers).

Die Pointersprünge werden mit oder ohne NDF ausgeführt.

Pointerbereich A + B:

STS Pointer	bis 782
VT6 Pointer	bis 427
VT2 Pointer	bis 139
VT1.5 Pointer	bis 103

1.4.5 STS-N-Fehlermessung (Anomalien)

Auswertung

Alle Fehler (Anomalien) werden parallel gezählt und gespeichert.

Anzeige

der Anomalien über LEDs:

CURRENT LED (rot) leuchtet, während die Anomalie anliegt.

HISTORY LED (gelb) leuchtet, wenn die Anomalie mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Anzeige der Fehler als Count- oder Ratiowert (äquivalente Bitfehlerrate). Bei der Berechnung des Ratiowertes werden für die Anomalien B1, B2, B3 und BIP-2 sowie REI-L und REI-P Korrekturformeln angewendet, die berücksichtigen, daß ein Mehrfachfehler im gleichen Bit zur Auslöschung des Fehlers führen kann.

Anomalie	LED
OOF	LOF/OOF
FAS	-
B1	B1/B2
B2	B1/B2
REI-L	-
В3	В3
REI-P	-

Tabelle TD-42 LED-Anzeige der möglichen Fehlerarten (STS-N)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.4.6 STS-N-Alarmerkennung (Defekte)

Auswertung

Alle anliegenden Alarme (Defekte) werden so weit wie möglich parallel ausgewertet und gespeichert. Die Speicherung erfolgt nur während eines gestarteten Meßintervalls.

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Defekt	LED
LOS	LOS
LOF	LOF/OOF
TIM-L	-
AIS-L	MS-AIS/AIS-L
RDI-L	MS-RDI/RDI-L
LOP-P	AU-LOP/LOP-P
AIS-P	AU-AIS/AIS-P
UNEQ-P	HP-UNEQ/UNEQ-P
PLM-P	HP-PLM/PLM-P
RDI-P	HP-RDI/RDI-P
TIM-P	-
PDI-P	-

Tabelle TD-43 LED-Anzeige der möglichen Defekte (STS-N)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.4.7 Messung von STS- und VT-Pointeraktionen

Auswertung

Alle Pointer eines ausgewählten Pfades werden als absolute Werte dargestellt. Die Pointerbewegungen werden nach ihrer Richtung erfaßt und gezählt.

NDF (New Data Flag) wird erfaßt und gezählt.

Anzeige

von:

- Anzahl der Pointeroperationen getrennt für STS- und VT-Pointer: Inkrement, Dekrement, Summe Inkrement + Dekrement, Differenz Inkrement - Dekrement
- Pointeradresse
- Anzahl der NDF-Ereignisse
- Korrespondierende Taktabweichung
- NDF-P und NDF-V können mit der LED-Anzeige (Frontplatte) angezeigt werden (Application Manager - Menü "Configuration" - LED Display ...):
 - die LED "AU-LOP/LOP-P" zeigt zusätzlich zur Meldung "LOP-P" die Meldung "NDF-P" an
 - die LED "TU-LOP/LOP-V" zeigt zusätzlich zur Meldung "LOP-V" die Meldung "NDF-V" an

Absolute Pointerwerte, Inkrement, Dekrement, Summe Inkrement + Dekrement und NDF werden in grafischer Histogramm-Darstellung mit einer wählbaren Auflösung von Sekunde, Minute, Stunde oder Tag angezeigt.

Ausdruck

Absolute Pointerwerte, Inkrement, Dekrement, Summe Inkrement + Dekrement und NDF werden mit einer Auflösung von 1 Sekunde in tabellarischer Form ausgedruckt.

1.4.8 Auswertung des Transport Overhead (TOH) und des Path Overhead (POH)

Auswertung

Bitfehlermessung

mit Quasi-Zufallsfolge PRBS 11	E1, F1, E2, F2 (Byte)
mit Quasi-Zufallsfolge PRBS 11	D1 bis D3, D4 bis D12 (Byte-Gruppe)

Ausgabe

über DCC/ECC-Schnittstelle (V.11)	E1, F1, E2, F2, K3 (Byte)
über DCC/ECC-Schnittstelle (V.11)	D1 bis D3, D4 bis D12, K1 bis K2 (Byte-Gruppe)

Anzeige

des kompletten TOH und POH	hexadezimal
der Trace Identifier J0, J1	ASCII, Klartext

1.4.9 STS Path Overhead (POH)

Standard Overhead

POH Byte	Option 3035/90.10 Option 3035/90.11 Option 3035/90.13	Option 3035/90.12	Option 3035/90.03	Option 3035/90.70 Option 3035/90.71
J1 (ASCII)	"WG STS-TRACE"			
B3 (hex)	Eingeblendet über Pa	rity-Bildung		
C2 (hex)	"02"	"04"	"12" bei Mapping "01" bei Bulk	"13"
G1 (hex)	"00"			
F2 (hex)	"00"			
H4 (hex)	"FC", "FD", "FE", "FF" Sequenz über vier Rahmen	"FF"	"FF"	"FF"
	48-Rahmen-Se- quenz nach GR253			
F3 (hex)	x) "00"			
Z4 (hex)	"00"			
N1 (hex)	"00"			

Tabelle TD-44 Belegung des POH

Belegung der STS POH Bytes

- Statisches Byte: alle außer B3, H4
- Overhead Sequenz m, n, p: J1, C2, G1, F2, F3, Z4
- Trace Identifier: J1 (Länge = 64 Rahmen)
- Dynamisch mit der Quasi-Zufallsfolge PRBS 11: F2 (Byte)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): F2, Z4, N1 (Byte)
- H4-Sequenz, schaltbar, 4/48-Bytes

1.5 Mapping STS-3c (E4 in STS-3c, ATM in STS-3c)

Option BN 3035/90.03 oder BN 3035/90.70 erforderlich.

Mapping-Struktur STS-3c SPE

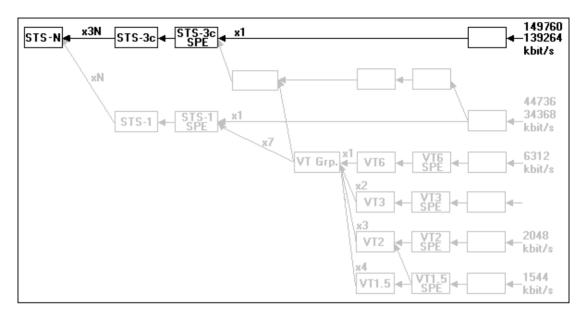


Bild TD-32 Mapping-Struktur: 139 MBit/s \rightarrow STS-3c-SPE \rightarrow STS-3c

Beschreibung der Mapping-Eigenschaften siehe Kap. 1.4, Seite TD-44.

1.6 Mapping STS-1 SPE (DS3 in STS-1, 34/45 Mbit/s in STM-0)

Option BN 3035/90.12

34/45 Mbit/s in STM-0 siehe auch Bedienungsanleitung "STM-1-Mappings", Kapitel "Mapping C-3".

Mapping-Struktur STS-1 SPE

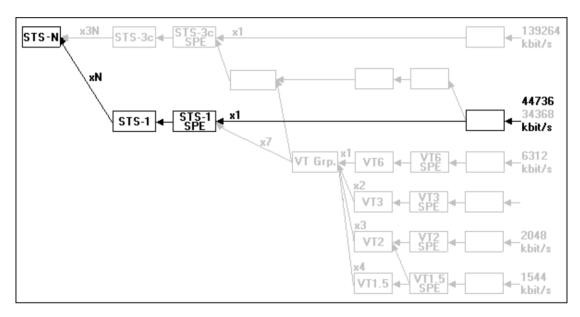


Bild TD-33 Mapping-Struktur: DS3 \rightarrow STS-1 SPE \rightarrow STS-1/3

Beschreibung der Mapping-Eigenschaften siehe Kap. 1.4, Seite TD-44.

1.7 Mapping VT1.5 SPE (DS1 in STS-1/3, 1,5 Mbit in STM-0)

Option BN 3035/90.10

1,5 Mbit/s in STM-0 siehe auch Bedienungsanleitung "STM-1-Mappings", Kapitel "Mapping C-11".

Mapping-Struktur: VT1.5

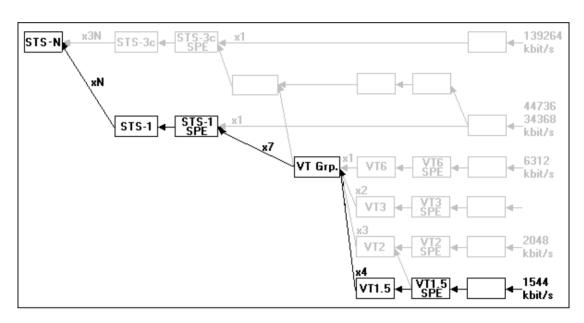


Bild TD-34 Mapping-Struktur: DS1 \rightarrow VT1.5 \rightarrow STS-1 SPE \rightarrow STS-1/3

Mapping-Struktur: 1,5 Mbit in STM-0 (AU-3, TU-11)

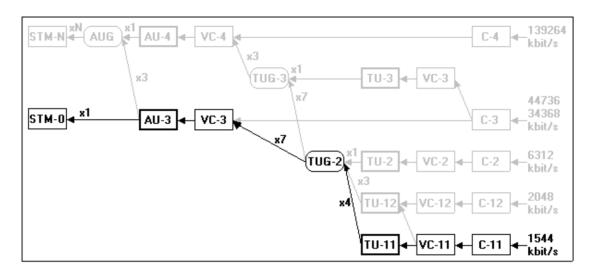


Bild TD-35 Mapping-Struktur: 1,5 Mbit/s \rightarrow C-11 \rightarrow TU-11 \rightarrow AU-3 \rightarrow STM-0

Mapping-Struktur: 1,5 Mbit in STM-0 (AU-3, TU-12)

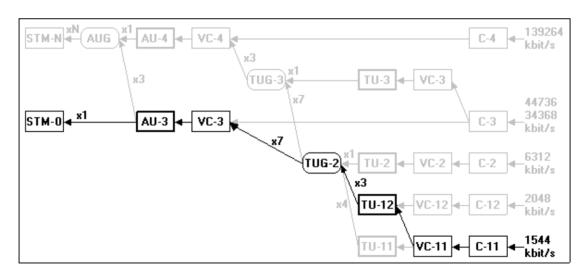


Bild TD-36 Mapping-Struktur: 1,5 Mbit/s \rightarrow C-11 \rightarrow TU-12 \rightarrow AU-3 \rightarrow STM-0

Mapping-Verfahren

Folgende Modi stehen zur Verfügung:

- Asynchroner Betrieb
- Bytesynchroner Betrieb (floating); nur TU-11

1.7.1 Belegung des VT1.5 Path Overhead

POH Byte	Meßkanal	Füllkanäle
V5 (bin)		
BIP-V (Bit 1-2)	Eingeblendet über Parity-Bildung	Eingeblendet über Parity-Bildung
REI-V (Bit 3)	"0"	"O"
RFI-V (Bit 4)	"0"	"O"
Path Label (Bit 5-7)	"010" bei asynchron "100" bei bytesynchron "001" bei Bulk	"010" bei asynchron "100" bei bytesynchron
RDI-V (Bit 8)	"0"	"0"
J2	"WG VT-TRACE" (ASCII)	"00" (hex)
Z6 (hex)	"00"	"00"
Z7 (hex)	"00"	"00"

Tabelle TD-45 Belegung des VT1.5 POH (Standard Overhead)

Belegung des Meßkanal-Bytes (VT1.5)

- Statisches Byte: alle außer Bit 1-2 von V5
- Overhead Sequenz m, n, p: J2, N2, K4
- Trace Identifier: J2 (Länge = 64 Rahmen)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): Z6

Belegung der Füllkanal-Bytes (VT1.5)

Fix, nicht editierbar (siehe Tab. TD-45).

1.7.2 VT1.5-Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.4.2, Seite TD-46 beschrieben werden, können folgende Anomalien eingeblendet werden:

Anomalien	Single	Rate
BIP-V ¹	ja	2E-4 bis 1E-10
REI-V ja 2E-4 bis 1E-10		
1 Statische Fehlereinblendung, editierbar über eine 2-Bit-Maske (x = don't care, 1 = Fehlereinblendung)		

Tabelle TD-46 Zusätzlich einstellbare Anomalien (VT1.5)

Die Fehlereinblendung bezieht sich auf den gewählten Meßkanal.

1.7.3 VT1.5-Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in Kap. 1.4.3, Seite TD-47 beschrieben werden, können folgende Defekte erzeugt werden:

Defekt	Test Sensor-Funktion	Sensor-Schwellen	
	Ein/Aus	M in N	t1 t2
LOM-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LOP-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
AIS-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
UNEQ-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
PLM-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
RDI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TIM-V	ja	-	-
RFI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
PDI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s oder
			t1 = 0,5 bis 250 ms t2 = 1 bis 8000 ms

Tabelle TD-47 Zusätzlich einstellbare Defekte (VT1.5)

Die Alarmerzeugung bezieht sich auf den gewählten Meßkanal.

1.7.4 Auswertung des VT1.5 Path Overhead

Anzeige

- des kompletten POH (hexadezimal)
- des Trace Identifier: J2 (ASCII, Klartext)

Ausgabe

• über DCC/ECC-Schnittstelle (V.11): Z6

1.7.5 VT1.5-Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 1.4.5, Seite TD-50 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
BIP-V	LP-BIP/BIP-V
REI-V	-

Tabelle TD-48 LED-Anzeigen für zusätzliche Anomalien (VT1.5)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.7.6 VT1.5-Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 1.4.6, Seite TD-52 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
LOM	TU-LOM
LOP-V	TU-LOP/LOP-V
AIS-V	TU-AIS/AIS-V
UNEQ-V	LP-UNEQ/UNEQ-V
PLM-V	LP-PLM/PLM-V
RDI-V	LP-RDI/RDI-V
TIM-V	-
RFI-V	-
PDI-V	-

Tabelle TD-49 LED-Anzeigen für zusätzliche Alarme (VT1.5)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.8 Mapping VT2 (E1 in STS-1/3, 2 Mbit/s in STM-0)

Option: BN 3035/90.13

2 Mbit in STM-0 siehe auch Bedienungsanleitung "STM-1-Mappings", Kapitel "Mapping C-12".

Mapping-Struktur: VT2

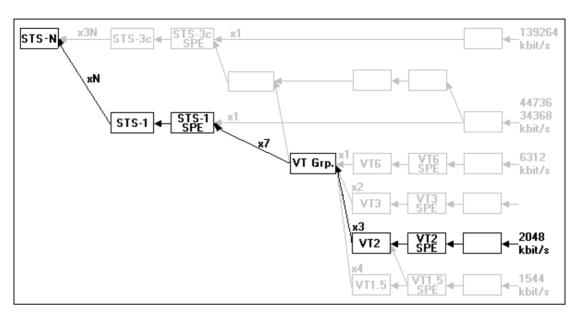


Bild TD-37 Mapping-Struktur: 2 Mbit/s \rightarrow VT2 SPE \rightarrow STS-1 SPE \rightarrow STS-1/3

Mapping-Struktur: 2 Mbit in STM-0

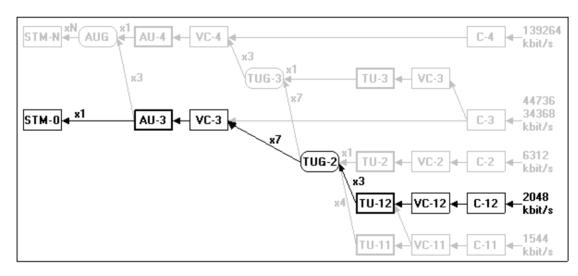


Bild TD-38 Mapping-Struktur: 2 Mbit/s \rightarrow AU-3 \rightarrow STM-0

Mapping-Verfahren

Folgende Modi stehen zur Verfügung:

- Asynchroner Betrieb
- Bytesynchroner Betrieb (floating)

1.8.1 Belegung des VT2 Path Overhead

POH Byte	Meßkanal	Füllkanäle
V5 (bin)		
BIP-V (Bit 1-2)	Eingeblendet über Parity-Bildung	Eingeblendet über Parity-Bildung
REI-V (Bit 3)	"0"	"0"
RFI-V (Bit 4)	"0"	"0"
Path Label (Bit 5-7)	"010" bei asynchron "100" bei bytesynchron "001" bei Bulk	"010" bei asynchron "100" bei bytesynchron
RDI-V (Bit 8)	"0"	"0"
J2	"WG VT-TRACE" (ASCII)	"00" (hex)
Z6 (hex)	"00"	"00"
Z7 (hex)	"00"	"00"

Tabelle TD-50 Belegung des VT2 POH (Standard Overhead)

Belegung der Meßkanal-Bytes (VT2)

- Statisches Byte: alle außer Bit 1-2 von V5
- Overhead Sequenz m, n, p: J2, N2, K4
- Trace Identifier: J2 (Länge = 64 Rahmen)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): Z6

Belegung der Füllkanal-Bytes (VT2)

Fix, nicht editierbar (siehe Tab. TD-50).

1.8.2 VT2-Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.4.2, Seite TD-46 beschrieben werden, können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate
BIP-V ¹	ja	2E-4 bis 1E-10
REI-V ja 2E-4 bis 1E-10		
1 Statische Fehlereinblendung, editierbar über eine 2-Bit-Maske (x = don't care, 1 = Fehlereinblendung)		

Tabelle TD-51 Zusätzlich einstellbare Anomalien (VT2)

Die Fehlereinblendung bezieht sich auf den gewählten Meßkanal.

1.8.3 VT2-Alarmerzeugung (Defekte)

2 Mbit in STM-0 siehe auch Bedienungsanleitung "STM-1-Mappings", Kapitel "Mapping C-12".

Zusätzlich zu den Alarmtypen, die in Kap. 1.4.3, Seite TD-47 beschrieben werden, können folgende Defekte erzeugt werden:

Defekt	Test Sensor-Funktion	Sensor-Schwellen	
	Ein/Aus	M in N	t1 t2
LOM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LOP-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
AIS-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
UNEQ-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
PLM-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
RDI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TIM-V	ja	-	-
RFI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s oder t1 = 0,5 bis 250 ms t2 = 1 bis 8000 ms
PDI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s

Tabelle TD-52 Zusätzlich einstellbare Defekte (VT2)

Die Alarmerzeugung bezieht sich auf den gewählten Meßkanal.

1.8.4 Auswertung des VT2 Path Overhead

Anzeige

- des kompletten POH (hexadezimal)
- des Trace Identifier: J2 (ASCII, Klartext)

Ausgabe

• über DCC/ECC-Schnittstelle (V.11): Z6

1.8.5 VT2-Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 1.4.5, Seite TD-50 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
BIP-V	LP-BIP/BIP-V
REI-V	-

Tabelle TD-53 LED-Anzeigen der zusätzlichen Anomalien (VT2)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.8.6 VT2-Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 1.4.6, Seite TD-52 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

Defect	LED
LOM	LOM
LOP-V	TU-LOP/LOP-V
AIS-V	TU-AIS/AIS-V
UNEQ-V	LP-UNEQ/UNEQ-V
PLM-V	LP-PLM/PLM-V
RDI-V	LP-RDI/RDI-V
TIM-V	-
RFI-V	-
PDI-V	-

Tabelle TD-54 LED-Anzeigen für zusätzliche Alarme (VT2)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.9 Mapping VT6 (6 Mbit/s in STS-1/3)

Option: BN 3035/90.11

Mapping-Struktur: VT6

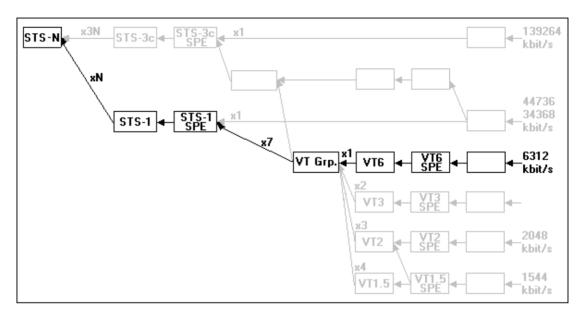


Bild TD-39 Mapping-Struktur: 6 Mbit/s \rightarrow VT6 SPE \rightarrow STS-1 SPE \rightarrow STS-1/3

Mapping-Verfahren

Folgender Modus steht zur Verfügung:

• Asynchroner Betrieb

1.9.1 Belegung des VT6 Path Overhead

POH Byte	Meßkanal	Füllkanäle
V5 (bin)		
BIP-V (Bit 1-2)	Eingeblendet über Parity-Bildung	Eingeblendet über Parity-Bildung
REI-V (Bit 3)	"0"	"0"
RFI-V (Bit 4)	"0"	"0"
Path Label (Bit 5-7)	"010" bei asynchron "001" bei Bulk	"010" bei asynchron
RDI-V (Bit 8)	"0"	"0"
J2	"WG VT-TRACE" (ASCII)	"00" (hex)
Z6 (hex)	"00"	"00"
Z7 (hex)	"00"	"00"

Tabelle TD-55 Belegung des VT6 POH (Standard Overhead)

Belegung der Meßkanal-Bytes (VT6)

- Statisches Byte: alle außer Bit 1-2 von V5
- Overhead Sequenz m, n, p: J2, N2, K4
- Trace Identifier: J2 (Länge = 64 Rahmen)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): Z6

Belegung der Füllkanal-Bytes (VT6)

Fix, nicht editierbar (siehe Tab. TD-55)

1.9.2 VT6-Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.4.2, Seite TD-46 beschrieben werden, können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate
BIP-V ¹	ja	2E-4 bis 1E-10
REI-V	ja	2E-4 bis 1E-10
1 Statische Fehlereinblendung, editierbar über eine 2-Bit-Maske (x = don't care, 1 = Fehlereinblendung)		

Tabelle TD-56 Zusätzlich einstellbare Anomalien (VT6)

Die Fehlereinblendung bezieht sich auf den gewählten Meßkanal.

1.9.3 VT6-Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in Kap. 1.4.3, Seite TD-47 beschrieben werden, können folgende Defekte erzeugt werden:

Defekt	Test Sensor-Funktion	Sensor-Schwellen	
	Ein/Aus	M in N	It1I It2I
LOM	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LOP-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
AIS-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
UNEQ-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
PLM-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
RDI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
TIM-V	ja	-	-
RFI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s oder t1 = 0,5 bis 250 ms t2 = 1 bis 8000 ms
PDI-V	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s

Tabelle TD-57 Zusätzlich einstellbare Defekte (VT6)

Die Alarmerzeugung bezieht sich auf den gewählten Meßkanal.

1.9.4 Auswertung des VT6 Path Overhead

Anzeige

- des kompletten POH (hexadezimal)
- des Trace Identifier: J2 (ASCII, Klartext)

Ausgabe

• über DCC/ECC-Schnittstelle (V.11): Z6

1.9.5 VT6-Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 1.4.5, Seite TD-50 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
BIP-V	LP-BIP/BIP-V
REI-V	-

Tabelle TD-58 LED-Anzeigen der zusätzlichen Anomalien (VT6)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.9.6 VT6-Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 1.4.6, Seite TD-52 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

Defect	LED
LOM	LOM
LOP-V	TU-LOP/LOP-V
AIS-V	TU-AIS/AIS-V
UNEQ-V	LP-UNEQ/UNEQ-V
PLM-V	LP-PLM/PLM-V
RDI-V	LP-RDI/RDI-V
TIM-V	-
RFI-V	-
PDI-V	-

Tabelle TD-59 LED-Anzeigen für zusätzliche Alarme (VT6)

Die Auswertung und Anzeige bezieht sich auf den gewählten Meßkanal.

1.10 Füllkanalbelegung

Mapping-Struktur wie im Meßkanal, Testmuster PRBS11.

2 Drop&Insert/Through Mode (Durchgangsbetrieb)

Option: BN 3035/90.20

2.1 Funktionen

Diese Option bietet folgende Funktionen für alle im ANT-20SE enthaltenen Mapping-Optionen.

Drop&Insert

Sender und Empfänger arbeiten unabhängig als Mapper/Demapper. Ein wählbarer Zubringer des empfangenen Signals wird ausgegeben. Ein extern zugeführter Zubringer wird in das Sendesignal eingefügt.

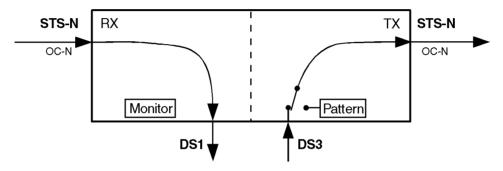


Bild TD-40 Drop & Insert: Sender und Empfänger arbeiten unabhängig voneinander

Zur Ausgabe und zum Einfügen von Zubringersignalen steht je ein unsymmetrischer Digitalausund -eingang am Grundgerät zur Verfügung (siehe Kap. 2.2.1, Seite TD-73 und Kap. 2.3.1, Seite TD-74).

Zusätzlich verfügt das Grundgerät über je einen symmetrischen Ausgang [13] und Eingang [12] für die Ausgabe und das Einfügen von Zubringersignalen über symmetrische Schnittstellen.

Through Mode (Durchgangsbetrieb)

Das empfangene Signal wird zum Sender geschleift (Durchgangsbetrieb). Ein Zubringersignal kann ausgegeben werden (Drop).

Der ANT-20SE kann im Durchgangsbetrieb auch als Signalmonitor eingesetzt werden, ohne daß der Signalinhalt beeinflußt wird.

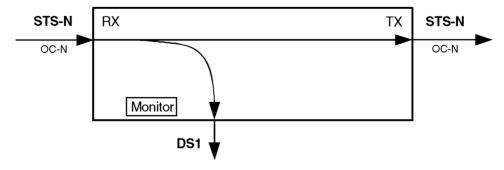


Bild TD-41 Durchgangsbetrieb: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "PDH MUX/DEMUX" und "M13 MUX/DEMUX", BN 3035/90.30 bis BN 3035/90.32 bietet der ANT-20SE Zugang zu den Zubringerkanälen innerhalb der "MUX/DEMUX"-Kette (mit Ausnahme von DS2). Dies gilt auch, wenn das PDH-Signal in einem Container übertragen wird.

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

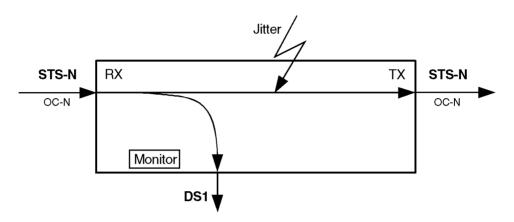


Bild TD-42 Through Mode: Durchgangssignal verjittert

Im Durchgangsbetrieb können im TOH Anomalien eingeblendet werden oder Manipulationen an den Bytes vorgenommen werden.

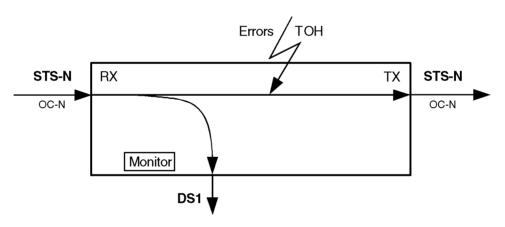


Bild TD-43 Through Mode: Fehlereinblendungen im TOH

2.1.1 Takterzeugung

Drop&Insert

siehe "Technische Daten" des Grundgeräts

Through Mode

Im Through Mode steht die Takterzeugung fest auf "abgeleitet vom Empfangstakt". Eine Verstimmung ist in dieser Betriebsart nicht zulässig (siehe auch "Technische Daten" des Grundgeräts).

2.1.2 Overhead-Erzeugung

Drop&Insert

siehe Kap. 1.4.1, Seite TD-44

Through Mode

Für alle Bytes außer den Bytes B1, B2 und M1 ist zu den beschriebenen Funktionen die Funktion "von Rx" einstellbar (sieh Kap. 1.4.1, Seite TD-44).

Bei STS-1 ist keine dynamische Belegung der Byte-Gruppe D4 bis D12 über die DCC/ECC-Schnittstelle möglich.

2.1.3 Fehlereinblendung (Anomalien)

Drop&Insert

siehe Kap. 1.4.2, Seite TD-46

Through Mode

Einblendung der Anomalien in die Bytes B1, B2 und REI-L. Grenzen der Einblendung (siehe Kap. 1.4.2, Seite TD-46).

2.1.4 Alarmerzeugung (Defekte)

Drop&Insert

siehe Kap. 1.4.3, Seite TD-47

Through Mode

Keine direkte Alarmerzeugung möglich.

Alarme (Defekte) im TOH können durch die Manipulation der Bytes erzeugt werden.

2.1.5 Pointererzeugung

Drop&Insert

siehe Kap. 1.4.4, Seite TD-48

Through Mode

Der Pointer der Empfangsseite wird unverändert wieder gesendet.

2.1.6 Messungen

Bei den Messungen gibt es keine Einschränkungen (siehe Kap. 1.4.5, Seite TD-50 bis Kap. 1.4.9, Seite TD-54).

2.2 Signalausgänge

2.2.1 Signalausgang "AUXILIARY" [11], elektrisch

Anschluß	unsymmetrisch, (koaxial)
Buchse	BNC
Innenwiderstand des Signalausgangs	75 Ω
Max. zulässiger Scheitelwert der Fremdspannung	+5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgangsspannung
E4	139,264	СМІ	± 0,5 V
DS3	44,736	B3ZS	± 1,0 V
E3	34,368	HDB3	
E2	8,448	HDB3	± 2,37 V
DS2	6,312	B8ZS	± 2,0 V
E1	2,048	HDB3	± 2,37 V
DS1	1,544	B8ZS	
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-60 Kenngrößen des Signalausgangs "AUXILIARY" [11], elektrisch

2.2.2 Signalausgang "LINE/AUXILIARY" [13], elektrisch

Anschluß symmetrisch
Buchse Bantam (Lemo SA)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Max. zulässiger Scheitelwert der Fremdspannung

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgangsspannung
E1	2,048	HDB3	± 3,0 V
DS1	1,544	B8ZS	DSX-1 compatible
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-61 Kenngrößen des Signalausgangs "LINE/AUXILIARY" [13], elektrisch

Der symmetrische Ausgang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Ausgang verwendet.

2.3 Signaleingänge

2.3.1 Signaleingang "AUXILIARY" [10], elektrisch

Anschluß unsymmetrisch, (koaxial)
BuchseBNC
Innenwiderstand des Signaleingangs
Max. zulässiger Frequenzoffset
Eingangsspannungsbereich 0 dB Dämpfung bezogen auf Nennpegel
Max. zulässiger Scheitelwert der Eingangsspannung ± 5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung
E4	139,264	СМІ	1,0 V ±10 %
DS3	44,736	B3ZS	1,0 V ±10 %
E3	34,368	HDB3	
E2	8,448	HDB3	2,37 V ±10 %
DS2	6,312	B8ZS	2,0 V ±10 %
E1	2,048	HDB3	2,37 V ±10 %
DS1	1,544	B8ZS	
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-62 Kenngrößen des Signaleingangs "AUXILIARY" [10], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

2.3.2 Signaleingang "LINE/AUXILIARY" [12], elektrisch

Anschluß symmetrisch
Buchse Bantam (Lemo SA)
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Max. zulässiger Frequenzoffset
Max. Anzahl aufeinanderfolgender Nullen bei Code = AMI
Max. zulässiger Scheitelwert der Eingangsspannung ± 5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung	
E1	2,048	HDB3	3,0 V ±10 %	
DS1	1,544	B8ZS		
Die Bitraten sind a	ie Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-63 Kenngrößen des Signaleingangs "LINE/AUXILIARY" [12], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

Der symmetrische Eingang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Eingang verwendet.

Notizen:

ANT-20SE Advanced Network Tester

PDH MUX/DEMUX

BN 3060/90.11

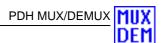
Drop & Insert

BN 3060/90.10 in Kombination mit PDH MUX/DEMUX

Softwareversion 7.20

Technische Daten

Inhalt


Technische Daten PDH MUX/DEMUX

1	Sendet	teil	.TD-1
	1.1	Rahmenerzeugung, PDH-MUX/DEMUX-Kette 64k/140M (Option BN 3035/90.30)	.TD-1
	1.2	Rahmenkennungssignale	.TD-1
	1.2.1	Modifikation der Rahmenbits	.TD-1
	1.2.2	CRC-Berechnung (PCM 30 CRC / PCM 31 CRC)	.TD-2
	1.3	Stopfverfahren nach ITU-T G.742 bzw. G.751	.TD-2
	1.3.1	Verstimmung der PDH-Zubringerbitrate	.TD-2
	1.4	Fehlereinblendung (Anomalien)	.TD-3
	1.5	Alarmerzeugung (Defekte)	.TD-3
	1.6	Meßsignale für Bitfehlermessungen	
	1.6.1	Interne Meßsignale	.TD-3
	1.6.2	Externes Signal (nur in Verbindung mit Option BN 3035/90.20)	.TD-3
	1.6.3	Füllsignale	.TD-3
2	Empfa	ngsteil	.TD-4
	2.1	Rahmensysteme	.TD-4
	2.2	Auswertung	.TD-4
	2.2.1	Auswertung der Rahmenbits	.TD-4
	2.2.2	CRC-Auswertungen (PCM 30 CRC / PCM 31 CRC)	.TD-4
	2.3	Messung der Verstimmungen	.TD-5
	2.4	Fehlermessungen (Anomalien)	.TD-5
	2.5	Alarmerkennung (Defekte)	.TD-5
	2.6	Auswertung von Meßsignalen für Bitfehlermessungen.	
	2.6.1	Interne Auswertung	
	2.6.2	Externes Signal (nur in Verbindung mit Option BN 3035/90.20)	.TD-5

i

3	•	Insert/Through Mode (Durchgangsbetrieb)/ &ReplaceTD-6
	3.1	FunktionenTD-6
	3.1.1	Takterzeugung
	3.1.2	Fehlereinblendung (Anomalien)
	3.1.3	Alarmerzeugung (Defekte)
	3.1.4	Messungen
	3.2	SignalausgängeTD-8
	3.2.1	Signalausgang "AUXILIARY" [11], elektrisch TD-8
	3.2.2	Signalausgang "LINE/AUXILIARY" [13], elektrischTD-8
	3.3	SignaleingängeTD-9
	3.3.1	Signaleingang "AUXILIARY" [10], elektrischTD-9
	3.3.2	Signaleingang "LINE/AUXILIARY" [12], elektrisch TD-10

Technische Daten PDH MUX/DEMUX

Optionen BN 3035/90.30 bis BN 3035/90.32

1 Sendeteil

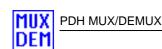
1.1 Rahmenerzeugung, PDH-MUX/DEMUX-Kette 64k/140M (Option BN 3035/90.30)

Folgende Rahmen stehen zur Verfügung:

Bitrate in kbit/s	Rahmen nach Richtlinie	Anmerkungen
2048	ITU-T G.704	System PCM 30, PCM 30 CRC, PCM 31, PCM 31 CRC
8448	ITU-T G.742	System PCM 120
34368	ITU-T G.751	System PCM 480
139264	ITU-T G.751	System PCM 1920

Tabelle TD-1 Rahmenerzeugung

Die Multiplexer-Kette (BN 3035/90.30) ermöglicht die Erzeugung eines komplett strukturierten Signals von 64 kbit/s bis 140 Mbit/s.


1.2 Rahmenkennungssignale

Rahmenkennungsworte (RKW/FAS) entsprechend ITU-T-Empfehlungen G.751, G.742 und G.704.

1.2.1 Modifikation der Rahmenbits

Statisch können folgende Bits programmiert werden:

PCM 1920 (G.751)	im RKW/FAS Bit-Nr. 13, 14, 15, 16
PCM 480, 120 (G.751, G.742)	im RKW/FAS Bit-Nr. 11, 12
PCM 30/31 (G.704)	.im Rahmenmeldewort (MW/NFAS) Bit-Nr. 3 bis 8
PCM 30/31 CRC (G.704)	.im Rahmenmeldewort (MW/NFAS) Bit-Nr. 3 bis 8

Dynamisch können folgende Bits programmiert werden:

PCM 30/ PCM 30 CRC (G.704)..... im Rahmenmeldewort (MW/NFAS)
Bit-Nr. 4 bis 8 (S_a4 bis S_a8)

Die Bits $S_a 4$ bis $S_a 8$ können selektiert und jeweils mit einem frei programmierbaren 8-Bit langen Muster belegt werden. Dies ermöglicht das Aussenden von S_a -Sequenzen.

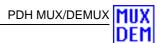
Bei PCM 30 / PCM 30 CRC kann im Zeitschlitz 16 der Rahmen 0 bzw. 1 mit einem frei programmierbaren 8-Bit-Wort belegt werden; die Rahmen 2 bis 15 können mit einem weiteren frei programmierbaren 8-Bit-Wort belegt werden.

1.2.2 CRC-Berechnung (PCM 30 CRC / PCM 31 CRC)

Der ANT-20SE errechnet die CRC-Summe für den Meßkanal und die Füllkanäle entsprechend der Empfehlung ITU-T G.704 und fügt die Ergebnisbits an den dafür vorgesehenen Stellen im Pulsrahmen ein.

1.3 Stopfverfahren nach ITU-T G.742 bzw. G.751

Die Bitraten im Ober- und Untersystem stehen im festen Verhältnis zueinander.


Das Stopfen geschieht mit nomineller Stopfrate (Verstimmung von Ober- und Untersystem ist gleich). Ausnahme: Einfügen von externen Signalen.

Obersystem Bitrate in kbit/s	ITU-T	Stopfverhältnis	Stopfrate nominell in kbit/s
8448	G.742	0,42424	4,226
34368	G.751	0,43575	9,750
139264	G.751	0,41912	9,934

Tabelle TD-2 Stopfverfahren

1.3.1 Verstimmung der PDH-Zubringerbitrate

Bei der Verstimmung handelt es sich um einen Mittelwert. Die jeweilige Momentanverstimmung kann nach oben oder unten abweichen.

1.4 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in den "Technische Daten" des Grundgeräts beschrieben werden, können folgende Anomalien eingeblendet werden:

Fehlerart, Anomalie ¹	Single	Rate ²	
CRC-4	ja	2E-3 bis 1E-8	
E-Bit	ja	2E-3 bis 1E-8	
Nur bei PCM 30 CRC und PCM 31 CRC Eingeblendet wird eine CRC-Wortfehlerrate			

Tabelle TD-3 Einstellbare Fehlerarten (Anomalien), zusätzlich zum Grundgerät

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv.

1.5 Alarmerzeugung (Defekte)

Die Alarmtypen sind in den "Technische Daten" des Grundgeräts beschrieben.

Die Einblendung von **Alarmen** (Defekte) **und Fehlern** (Anomalien) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde ist aktiv.

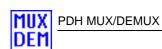
1.6 Meßsignale für Bitfehlermessungen

1.6.1 Interne Meßsignale

Bitmuster wie Grundgerät:

gesendet über alle Zeitkanäle hinweg (gerahmtes Muster nach ITU-T O.150/O.151)

gesendet im gewählten Zeitkanal


1.6.2 Externes Signal (nur in Verbindung mit Option BN 3035/90.20)

Die Einfügung eines externen Signals mit der Bitrate 34 368 kbit/s (koaxial), 8 448 kbit/s (koaxial) oder 2 048 kbit/s (koaxial bzw. symmetrisch) kann anstelle eines Bitmusters (siehe Kap. 1.6.1) in den gewählten Zeitkanal erfolgen.

Die Schnittstellen hierfür sind in den "Technische Daten" der Bedienungsanleitung "STM-1-Mappings" beschrieben.

1.6.3 Füllsignale

In den nicht angewählten Zeitkanälen werden komplett strukturierte Signale mit Quasizufallsfolge PRBS 6 in allen 64-kbit/s-Kanälen verwendet.

2 Empfangsteil

2.1 Rahmensysteme

Auswertbare Rahmen, PDH-MUX/DEMUX-Kette 64k/140M und PDH DEMUX Kette 64k/140M (Optionen BN 3035/90.30 und 3035/90.31)

Bitrate in kbit/s	Rahmen nach Richtlinie	Anmerkungen
2048	ITU-T G.704	System PCM 30, PCM 31
2048	ITU-T G.704/G.706	System PCM 30 CRC, PCM 31 CRC
8448	ITU-T G.742	System PCM 120
34368	ITU-T G.751	System PCM 480
139264	ITU-T G.751	System PCM 1920

Tabelle TD-4 Rahmensysteme für die einzelnen Systembitraten

Bei allen PCM-Rahmenstrukturen sind Zeitkanäle anwählbar. Dies können Sprach- und Datenkanäle bei einem Primärsystem oder Zubringerkanäle in einem Stopf-Multiplexsystem sein.

2.2 Auswertung

2.2.1 Auswertung der Rahmenbits

Folgende Bits werden ausgewertet und zur Anzeige gebracht

 PCM 1920 (G.751)
 im RKW/FAS Bit-Nr. 13, 14, 15, 16

 PCM 480, 120 (G.751, G.742)
 im RKW/FAS Bit-Nr. 11, 12

 PCM 30/31 (G.704)
 im Rahmenmeldewort (MW/NFAS) Bit-Nr. 1 bis 8

 PCM 30/31 CRC (G.704)
 im Rahmenmeldewort (MW/NFAS) Bit-Nr. 2 bis 8, (A-Bit, S_a4 bis S_a8)

Bei PCM30/31 CRC kann jeweils eines der Bits S_a4 bis S_a8 selektiert werden, um bis zu acht Bit lange Mustersequenzen anzuzeigen.

Die D-Alarmbits (RDI-Alarme) werden zusätzlich ausgewertet und über LEDs angezeigt. Siehe hierzu auch "Technische Daten" des Grundgeräts.

2.2.2 CRC-Auswertungen (PCM 30 CRC / PCM 31 CRC)

Im gewählten Meßkanal werden fehlerhafte CRC-Worte ausgewertet (CRC-Wortfehlerzählung).

Aus der CRC-Wortfehlerhäufigkeit wird die äquivalente CRC-Bitfehlerhäufigkeit berechnet.

Die Zahl der E-Bit-Fehler wird ebenfalls in eine äquivalente Bitfehlerrate umgerechnet.

2.3 Messung der Verstimmungen

Alle Verstimmungen in den Hierarchiestufen des Meßpfades werden parallel gemessen und angezeigt.

Anzeige in ppm

2.4 Fehlermessungen (Anomalien)

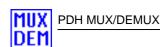
Die Fehlermessungen sind in den "Technische Daten" des Grundgeräts beschieben. Die Rahmenkennungsworte aller Hierarchieebenen des gewählten Meßpfades werden parallel überprüft.

2.5 Alarmerkennung (Defekte)

Die Alarmerkennungen sind in den "Technische Daten" des Grundgeräts beschieben. Die RDI-Alarme aller Hierarchieebenen des gewählten Meßpfades werden parallel überprüft.

2.6 Auswertung von Meßsignalen für Bitfehlermessungen

2.6.1 Interne Auswertung


Auswertung:

- über alle Zeitkanäle hinweg (gerahmtes Muster nach ITU-T 0.150/0.151)
- im gewählten Zeitkanal

2.6.2 Externes Signal (nur in Verbindung mit Option BN 3035/90.20)

Die Ausgabe des Signals nach extern mit der Bitrate 34 368 kbit/s (koaxial), 8 448 kbit/s (koaxial) oder 2 048 kbit/s (koaxial bzw. symmetrisch) erfolgt alternativ/ parallel zur internen Auswertung (siehe Kap. 2.6.1).

Die Schnittstellen hierfür sind in den "Technische Daten" der Bedienungsanleitung "STM-1-Mappings" beschrieben.

3 Drop&Insert/Through Mode (Durchgangsbetrieb)/ Block&Replace

Option BN 3035/90.20

3.1 Funktionen

Diese Option bietet folgende Funktionen für alle im ANT-20SE enthaltenen PDH-Multiplex-Optionen.

Drop&Insert

Sender und Empfänger arbeiten unabhängig als Multiplexer/Demultiplexer. Ein wählbarer Zubringer des empfangenen Signals wird ausgegeben. Ein extern zugeführter Zubringer wird in das Sendesignal eingefügt.

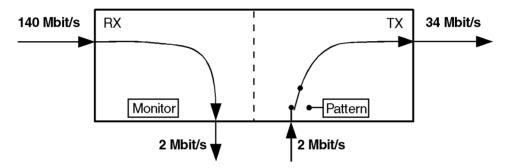


Bild TD-1 Drop & Insert: Sender und Empfänger arbeiten unabhängig voneinander

Zur Ausgabe und zum Einfügen von Zubringersignalen steht je ein unsymmetrischer Digitalausund -eingang am Grundgerät zur Verfügung (siehe Kap. 3.2.1, Seite TD-8 und Kap. 3.3.1, Seite TD-9).

Zusätzlich verfügt das Grundgerät über je einen symmetrischen Ausgang [13] und Eingang [12] für die Ausgabe und das Einfügen von Zubringersignalen über symmetrische Schnittstellen.

Through Mode (Durchgangsbetrieb)

Das empfangene Signal wird zum Sender geschleift (Durchgangsbetrieb).

Der ANT-20SE kann im Durchgangsbetrieb auch als Signalmonitor eingesetzt werden, ohne daß der Signalinhalt beeinflußt wird.

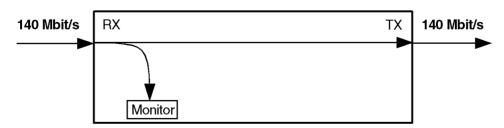


Bild TD-2 Durchgangsbetrieb: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

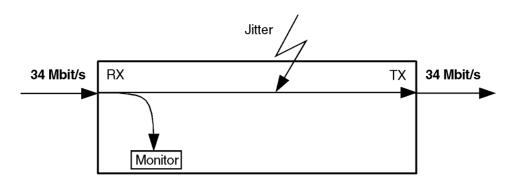


Bild TD-3 Through Mode: Durchgangssignal verjittert

Block&Replace

In dieser Betriebsart nicht möglich.

3.1.1 Takterzeugung

Drop&Insert

siehe "Technische Daten" des Grundgeräts

Through Mode

Im Through Mode steht die Takterzeugung fest auf "abgeleitet vom Empfangstakt". Eine Verstimmung ist in dieser Betriebsart nicht zulässig (siehe auch "Technische Daten" des Grundgeräts).

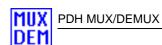
3.1.2 Fehlereinblendung (Anomalien)

Drop&Insert

siehe Kap. 1.4, Seite TD-3

Through Mode

Keine Fehlereinblendung möglich.


3.1.3 Alarmerzeugung (Defekte)

Drop&Insert

siehe Kap. 1.5, Seite TD-3

Through Mode

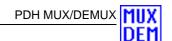
Keine Alarmerzeugung möglich.

3.1.4 Messungen

Bei den Messungen gibt es keine Einschränkungen (siehe Kap. 2, Seite TD-4).

3.2 Signalausgänge

3.2.1 Signalausgang "AUXILIARY" [11], elektrisch


Anschluß unsymmetrisch, (koaxial)
BuchseBNC
Innenwiderstand des Signalausgangs75 Ω
Max. zulässiger Scheitelwert der Fremdspannung

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgangsspannung
E4	139,264	СМІ	± 0,5 V
DS3	44,736	B3ZS	± 1,0 V
E3	34,368	HDB3	
E2	8,448	HDB3	± 2,37 V
E1	2,048	HDB3	
DS1	1,544	B8ZS	
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-5 Kenngrößen des Signalausgangs "AUXILIARY" [11], elektrisch

3.2.2 Signalausgang "LINE/AUXILIARY" [13], elektrisch

Anschluß	sch
BuchseLemo (Banta	
Innenwiderstand des Signalausgangs 2,048 Mbit/s	
Max. zulässiger Scheitelwert der Fremdspannung ±	5 V

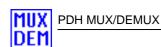
Schnittstelle	Bitrate (Mbit/s)	Code	Ausgansspannung
E1	2,048	HDB3	± 3,0 V
DS1	1,544	B8ZS	DSX-1 compatible
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-6 Kenngrößen des Signalausgangs "LINE/AUXILIARY" [13], elektrisch

Der symmetrische Ausgang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Ausgang verwendet.

3.3 Signaleingänge

3.3.1 Signaleingang "AUXILIARY" [10], elektrisch


Anschlußunsymmetrisch, (ko	axial)
Buchse	.BNC
Innenwiderstand des Signaleingangs	75 Ω
Max. zulässiger Frequenzoffset) ppm
Eingangsspannungsbereich0 dB Dämpfung bezogen auf Nenn	pegel
Max. zulässiger Scheitelwert der Eingangsspannung	± 5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung
E4	139,264	СМІ	1,0 V ±10 %
DS3	44,736	B3ZS	1,0 V ±10 %
E3	34,368	HDB3	
E2	8,448	HDB3	2,37 V ±10 %
E1	2,048	HDB3	
DS1	1,544	B8ZS	
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-7 Kenngrößen des Signaleingangs "AUXILIARY" [10], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

3.3.2 Signaleingang "LINE/AUXILIARY" [12], elektrisch

Anschluß symmetrisch					
BuchseLemo SA (Bantam)					
2,048 Mbit/s	Innenwiderstand des Signaleingangs 2,048 Mbit/s				
Max. zulässiger F	requenzoffset		± 500 ppm		
Max. Anzahl aufeinanderfolgender Nullen bei Code = AMI					
Max. zulässiger Scheitelwert der Eingangsspannung					
Schnittstelle Bitrate (Mbit/s) Code Eingangsspannung					
E1	2,048	HDB3	3,0 V ±10 %		
DS1	1,544	B8ZS			

Tabelle TD-8 Kenngrößen des Signaleingangs "LINE/AUXILIARY" [12], elektrisch

Statusanzeige "LOS" (Loss of Signal)

Die Bitraten sind abhängig von den Mapping-Optionen.

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

Der symmetrische Eingang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Eingang verwendet.

ANT-20SE Advanced Network Tester

M13 MUX/DEMUX

BN 3060/90.12

Drop & Insert

BN 3060/90.10 in Kombination mit M13 MUX/DEMUX

Softwareversion 7.20

Technische Daten

Inhalt


Technische Daten M13 MUX/DEMUX

1	Sendet	eil	TD-1
	1.1	Rahmenerzeugung, M13 MUX/DEMUX (Option BN 3035/90.32)	TD-1
	1.2	CRC-Berechnung (DS1 ESF)	
	1.3	Stopfverfahren nach T1.107 bzw. T1.107a	
	1.3.1	Verstimmung der PDH-Zubringerbitrate	TD-2
	1.4	Fehlereinblendung (Anomalien)	
	1.5	Alarmerzeugung (Defekte)	
	1.6	Meßsignale für Bitfehlermessungen	
	1.6.1	Interne Meßsignale	TD-3
	1.6.2	Externes Signal (nur in Verbindung mit Option BN 3035/90.20)	TD-3
	1.6.3	Füllsignale	TD-3
2	Empfar	ngsteil	TD-4
	2.1	Rahmensysteme	TD-4
	2.2	Fehlermessungen (Anomalien)	TD-4
	2.3	Alarmerkennung (Defekte)	TD-4
	2.4	Messung der Verstimmungen	TD-4
	2.5	Auswertung von Meßsignalen für Bitfehlermessungen	TD-5
	2.5.1	Interne Auswertung	TD-5
	2.5.2	Externes Signal	
		(nur in Verbindung mit Option BN 3035/90.20)	TD-5
3	-	Insert/Through Mode (Durchgangsbetrieb)/	
	Block&	Replace	TD-6
	3.1	Funktionen	TD-6
	3.1.1	Takterzeugung	TD-7
	3.1.2	Fehlereinblendung (Anomalien)	TD-7
	3.1.3	Alarmerzeugung (Defekte)	TD-7
	3.1.4	Messungen	TD-8

i

3.2	Signalausgänge	TD-8
3.2.1	Signalausgang "AUXILIARY" [11], elektrisch	TD-8
3.2.2	Signalausgang "LINE/AUXILIARY" [13], elektrisch	TD-8
3.3	Signaleingänge	TD-9
3.3.1	Signaleingang "AUXILIARY" [10], elektrisch	TD-9
3.3.2	Signaleingang "LINE/AUXILIARY" [12], elektrisch T	D-10

Technische Daten M13 MUX/DEMUX

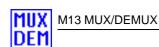
Option BN 3035/90.32

1 Sendeteil

1.1 Rahmenerzeugung, M13 MUX/DEMUX (Option BN 3035/90.32)

Folgende Rahmen stehen zur Verfügung:

Ebene	Bitrate in kbit/s	Rahmen nach Richtlinie	Anmerkungen
DS1	1544	T1.107	SF (D4)
	1544	T1.107	ESF (T1.107)
DS2	6312	T1.107	-
DS3	44736	T1.107	M13
	44736	T1.107a	C-Parity


Tabelle TD-1 Rahmenerzeugung

Die Multiplexer-Kette (BN 3035/90.32) ermöglicht die Erzeugung eines komplett strukturierten Signals mit 28 DS1-Signalen in einem DS3-Signal.

Die DS2-Ebene kann nicht manipuliert werden.

1.2 CRC-Berechnung (DS1 ESF)

Der ANT-20SE errechnet die CRC-6-Summe für den Meßkanal und die Füllkanäle entsprechend der Norm T1.107 und fügt die Ergebnisbits an den dafür vorgesehenen Stellen im Extended Super Frame ein.

1.3 Stopfverfahren nach T1.107 bzw. T1.107a

Die Bitraten im Ober- und Untersystem stehen im festen Verhältnis zueinander.

Das Stopfen geschieht mit nomineller Stopfrate (Verstimmung von Ober- und Untersystem ist gleich). Ausnahme: Einfügen von externen Signalen.

M13

Obersystem	Stopfverhältnis	Stopfrate in kbit/s
DS2	0,335	1,8
DS3	0,39	3,544

Tabelle TD-2 Stopfverfahren M13

C-Parity

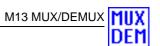
Obersystem	Stopfverhältnis	Stopfrate in kbit/s
DS2	0,073	0,393
DS3	1	9,398

Tabelle TD-3 Stopfverfahren C-Parity

1.3.1 Verstimmung der PDH-Zubringerbitrate

Statische Verstimmung der PDH-Zubringerbitraten beim Einfügen in den SONET-SPE-Container.

Bei der Verstimmung handelt es sich um einen Mittelwert. Die jeweilige Momentanverstimmung kann nach oben oder unten abweichen.


1.4 Fehlereinblendung (Anomalien)

Die Fehlerarten sind in den "Technische Daten" des Grundgeräts beschrieben.

1.5 Alarmerzeugung (Defekte)

Die Alarmtypen sind in den "Technische Daten" des Grundgeräts beschrieben.

Die Einblendung von **Alarmen** (Defekte) **und Fehlern** (Anomalien) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde ist aktiv.

1.6 Meßsignale für Bitfehlermessungen

1.6.1 Interne Meßsignale

Bitmuster wie Grundgerät:

gesendet über alle Zeitkanäle hinweg (gerahmtes Muster)

gesendet im gewählten Zeitkanal

1.6.2 Externes Signal (nur in Verbindung mit Option BN 3035/90.20)

Die Einfügung eines externen Signals mit der Bitrate 1554 kbit/s (koaxial bzw. symmetrisch) kann anstelle eines Bitmusters in den gewählten Zeitkanal erfolgen (siehe Kap. 1.6.1).

Die Schnittstellen hierfür sind in Kap. 3, Seite TD-6 beschrieben.

1.6.3 Füllsignale

In den nicht angewählten Zeitkanälen werden komplett strukturierte Signale mit Quasizufallsfolge PRBS 6 in allen 64-kbit/s-Kanälen verwendet.

2 Empfangsteil

2.1 Rahmensysteme

Auswertbare Rahmen der M13 MUX/DEMUX Kette (Option BN 3035/90.32):

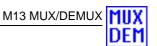
Ebene	Bitrate in kbit/s	Rahmen nach Richtlinie	Anmerkungen
DS1	1544	T1.107	SF (D4)
	1544	T1.107	ESF (T1.107)
DS2	6312	T1.107	-
DS3	44736	T1.107	M13
	44736	T1.107a	C-Parity

Tabelle TD-4 Rahmensysteme für die einzelnen Systembitraten

Von 28 DS1-Signalen wird ein Kanal als Meßkanal ausgewählt. Die DS2-Ebene kann nicht ausgewertet werden.

2.2 Fehlermessungen (Anomalien)

Die Fehlermessungen sind in den "Technische Daten" des Grundgeräts beschieben. Die Rahmenkennungsworte aller Hierarchieebenen des gewählten Meßpfades werden parallel überprüft.


2.3 Alarmerkennung (Defekte)

Die Alarmerkennungen sind in den "Technische Daten" des Grundgeräts beschieben. Die RDI-Alarme (yellow) aller Hierarchieebenen des gewählten Meßpfades werden parallel überprüft.

2.4 Messung der Verstimmungen

Alle Verstimmungen in den Hierarchiestufen des Meßpfades werden parallel gemessen und angezeigt.

Anzeige in ppm

2.5 Auswertung von Meßsignalen für Bitfehlermessungen

2.5.1 Interne Auswertung

Auswertung:

- über alle Zeitkanäle hinweg (gerahmtes Muster)
- im gewählten Zeitkanal

2.5.2 Externes Signal (nur in Verbindung mit Option BN 3035/90.20)

Die Ausgabe des Signals nach extern mit der Bitrate 1554 kbit/s (koaxial bzw. symmetrisch) erfolgt alternativ zur Auswertung (siehe Kap. 2.5.1).

Die Schnittstellen hierfür sind in Kap. 3, Seite TD-6 beschrieben.

3 Drop&Insert/Through Mode (Durchgangsbetrieb)/ Block&Replace

Option BN 3035/90.20

3.1 Funktionen

Diese Option bietet folgende Funktionen für alle im ANT-20SE enthaltenen Mapping-Optionen.

Drop&Insert

Sender und Empfänger arbeiten unabhängig als Multiplexer/Demultiplexer. Ein wählbarer Zubringer des empfangenen Signals wird ausgegeben. Ein extern zugeführter Zubringer wird in das Sendesignal eingefügt.

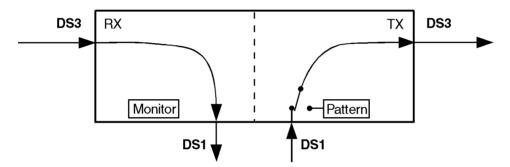


Bild TD-1 Drop & Insert: Sender und Empfänger arbeiten unabhängig voneinander

Zur Ausgabe und zum Einfügen von Zubringersignalen steht je ein unsymmetrischer Digitalausund -eingang am Grundgerät zur Verfügung (siehe Kap. 3.2.1, Seite TD-8 und Kap. 3.3.1, Seite TD-9).

Zusätzlich vefügt das Grundgerät über je einen symmetrischen Ausgang [13] und Eingang [12] für die Ausgabe und das Einfügen von Zubringersignalen über symmetrische Schnittstellen.

Through Mode (Durchgangsbetrieb)

Das empfangene Signal wird zum Sender geschleift (Durchgangsbetrieb).

Der ANT-20SE kann im Durchgangsbetrieb auch als Signalmonitor eingesetzt werden, ohne daß der Signalinhalt beeinflußt wird.

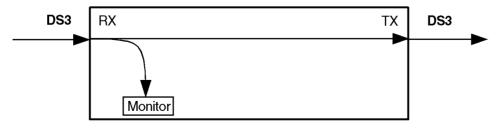
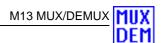



Bild TD-2 Durchgangsbetrieb: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

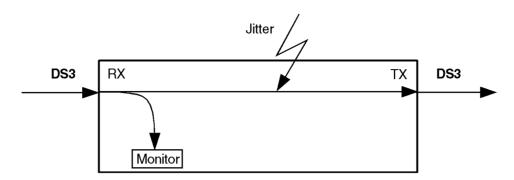


Bild TD-3 Through Mode: Durchgangssignal verjittert

Block&Replace

In der Betriebsart PDH nicht möglich.

3.1.1 Takterzeugung

Drop&Insert

siehe "Technische Daten" des Grundgeräts

Through Mode

Im Through Mode steht die Takterzeugung fest auf "abgeleitet vom Empfangstakt". Eine Verstimmung ist in dieser Betriebsart nicht zulässig (siehe auch "Technische Daten" des Grundgeräts).

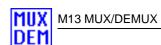
3.1.2 Fehlereinblendung (Anomalien)

Drop&Insert

siehe Kap. 1.4, Seite TD-2

Through Mode

Keine Fehlereinblendung möglich.


3.1.3 Alarmerzeugung (Defekte)

Drop&Insert

siehe Kap. 1.5, Seite TD-2

Through Mode

Keine Alarmerzeugung möglich.

3.1.4 Messungen

Bei den Messungen gibt es keine Einschränkungen (siehe Kap. 2, Seite TD-4).

3.2 Signalausgänge

3.2.1 Signalausgang "AUXILIARY" [11], elektrisch

Anschluß unsymmetrisch, (koaxial)
BuchseBNC
Innenwiderstand des Signalausgangs75 Ω
Max. zulässiger Scheitelwert der Fremdspannung

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgansspannung
E4	139,264	СМІ	± 0,5 V
DS3	44,736	B3ZS	± 1,0 V
E3	34,368	HDB3	
E2	8,448	HDB3	± 2,37 V
E1	2,048	HDB3	
DS1	1,544	B8ZS	
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-5 Kenngrößen des Signalausgangs "AUXILIARY" [11], elektrisch

3.2.2 Signalausgang "LINE/AUXILIARY" [13], elektrisch

Anschluß	symmetrisch
Buchse	Lemo SA (Bantam)
Innenwiderstand des Signalausgangs 2,048 Mbit/s	
Max. zulässiger Scheitelwert der Fremdspannung	

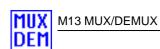
Schnittstelle	Bitrate (Mbit/s)	Code	Ausgansspannung
E1	2,048	HDB3	± 3,0 V
DS1	1,544	B8ZS	DSX-1 compatible
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-6 Kenngrößen des Signalausgangs "LINE/AUXILIARY" [13], elektrisch

Der symmetrische Ausgang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Ausgang verwendet.

3.3 Signaleingänge

3.3.1 Signaleingang "AUXILIARY" [10], elektrisch


Ansch	nlußunsymmetrisch, (koaxial)
Buchs	se
Innen	widerstand des Signaleingangs
Max.	zulässiger Frequenzoffset
Einga	ngsspannungsbereich 0 dB Dämpfung bezogen auf Nennpegel
Max.	zulässiger Scheitelwert der Eingangsspannung±5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung
E4	139,264	СМІ	1,0 V ±10 %
DS3	44,736	B3ZS	1,0 V ±10 %
E3	34,368	HDB3	
E2	8,448	HDB3	2,37 V ±10 %
E1	2,048	HDB3	
DS1	1,544	B8ZS	
Die Bitraten sind abhängig von den Mapping-Optionen.			

Tabelle TD-7 Kenngrößen des Signaleingangs "AUXILIARY" [10], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

3.3.2 Signaleingang "LINE/AUXILIARY" [12], elektrisch

Anschluß			
BuchseLemo SA (Bantam			Lemo SA (Bantam)
Innenwiderstand des Signaleingangs 2,048 Mbit/s			
Max. zulässiger F	requenzoffset		$\dots \dots \pm 500 \text{ ppm}$
Max. Anzahl aufeinanderfolgender Nullen bei Code = AMI			
Max. zulässiger S	Scheitelwert der Eingangs	spannung	±5 V
Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung
E1	2,048	HDB3	3,0 V ±10 %
DS1	1,544	B8ZS	

Tabelle TD-8 Kenngrößen des Signaleingangs "LINE/AUXILIARY" [12], elektrisch

Statusanzeige "LOS" (Loss of Signal)

Die Bitraten sind abhängig von den Mapping-Optionen.

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

Der symmetrische Eingang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Eingang verwendet.

ANT-20SE **Advanced Network Tester**

Optische Schnittstellen bis 155 Mbit/s BN 3060/91.01 und BN 3060/91.02 Optische Schnittstellen bis 622 Mbit/s BN 3060/91.11 und BN 3060/91.12 **Optische Schnittstelle STM-16/OC-48** BN 3060/91.50 bis BN 3060/91.53 Optische Schnittstelle STM-64/OC-192

BN 3060/91.40 bis BN 3060/91.42

Drop&Insert

BN 3060/90.10 in Kombination mit Opt. Schnittstellen

Softwareversion 7.20

Technische Daten

Inhalt

Technische Daten STM-0/1/4/OC-1/3/12

1	Sendete	ell	I D-1
	1.1	Digitalsignal-Ausgang	TD-1
	1.1.1	Signalausgang [18], optisch	TD-1
	1.2	Takterzeugung und Bitraten	TD-2
	1.2.1	Takterzeugung	TD-2
	1.2.2	Bitraten	TD-2
	1.3	SDH- und SONET-Sendesignale	TD-2
	1.3.1	STM-4-Sendesignal	TD-2
	1.3.2	STM-1-Sendesignal	TD-2
	1.3.3	STM-0-Sendesignal	TD-3
	1.3.4	OC-12-Sendesignal	TD-3
	1.3.5	OC-3-Sendesignal	TD-3
	1.3.6	OC-1-Sendesignal	TD-3
	1.3.7	Scrambling	TD-3
	1.3.8	Overhead-Erzeugung	TD-4
	1.3.8.1	Section Overhead (SOH), Transport Overhead (TOH).	TD-4
	1.3.9	Fehlereinblendung (Anomalien)	TD-5
	1.3.10	Alarmerzeugung (Defekte)	TD-6
	1.4	Sendesignale für ADM-Tester	TD-7
	1.4.1	Optisches Sendesignal	TD-7
	1.4.2	PDH-Sendesignal	TD-7
2	Empfan	ngsteil	TD-8
	2.1	Digitalsignal-Eingänge	TD-8
	2.1.1	Signaleingang [17], optisch	TD-8
	2.1.2	Signaleingang [16], elektrisch	TD-9
	2.1.3	Taktrückgewinnung	TD-9
	2.2	SDH- und SONET-Empfangssignale	TD-10
	2.2.1	STM-4-Empfangssignal	
	2.2.2	STM-1-Empfangssignal	TD-10
	2.2.3	STM-0-Empfangssignal	
	2.2.4	OC-12-Empfangssignal	
	2.2.5	OC-3-Empfangssignal	

i

	2.2.6	OC-1-EmpfangssignalTl	D-10
	2.2.7	Descrambling	D-11
	2.3	MeßartenT	D-11
	2.3.1	Alarmerkennung (Defekte)	D-11
	2.3.2	Fehlermessungen (Anomalien)T	D-11
	2.3.3	Auswertung des Section Overhead (SOH), Transport Overhead (TOH)TI	D-12
3	Optisch	ner Leistungsteiler BN 3035/90.49T	D-13
	3.1	WellenlängenbereicheT	D-13
	3.2	Dämpfung	D-13
4	•	nsert/Through Mode (Durchgangsbetrieb)/	D 44
		ReplaceT	
	4.1	Funktionen	
	4.1.1	Takterzeugung	
	4.1.2 4.1.3	Overhead-Erzeugung	
	4.1.3 4.1.4	Fehlereinblendung (Anomalien)	
	4.1.4 4.1.5	Messungen	
	4.1.5	Signalausgänge	
	4.2.1	Signalausgang "AUXILIARY" [11], elektrisch	
	4.2.2	Signalausgang "LINE/AUXILIARY" [13], elektrischTl	
	4.3	SignaleingängeT	
	4.3.1	Signaleingang "AUXILIARY" [10], elektrischT	
	4.3.2	Signaleingang "LINE/AUXILIARY" [12], elektrisch Ti	
Ted	chnisch	e Daten STM-16/OC-48	
1	Sendete	eilT	D-23
	1.1	Digitalsignal-Ausgang	D-23
	1.1.1	Signalausgang [47], optisch	D-23
	1.1.2	Signalausgang [46], elektrisch	D-24
	1.2	Takterzeugung und Bitraten	D-24
	1.2.1	Takterzeugung intern	D-24
	1.2.2	Takterzeugung extern [45]	D-24
	1.2.3	Bitrate	D-24
	1.2.4	Taktausgang [41]	D-25

	1.3	SDH- und SONET-Sendesignale	TD-25
	1.3.1	STM-16-Sendesignal	TD-25
	1.3.2	OC-48-Sendesignal	TD-25
	1.3.3	Scrambling	TD-25
	1.3.4	Overhead-Erzeugung	TD-26
	1.3.4.1	Section Overhead (SOH), Transport Overhead (TOH).	TD-26
	1.3.5	Fehlereinblendung (Anomalien)	TD-28
	1.3.6	Alarmerzeugung (Defekte)	TD-28
	1.4	Sendesignale für ADM-Tester	TD-29
	1.4.1	Optisches Sendesignal	TD-29
	1.4.2	PDH-Sendesignal	TD-29
2	Empfan	ngsteil	TD-30
	2.1	Digitalsignal-Eingänge	TD-30
	2.1.1	Signaleingang [44], optisch	TD-30
	2.1.2	Signaleingang [43], elektrisch	TD-31
	2.1.3	Taktausgang [42]	TD-31
	2.2	SDH- und SONET-Empfangssignale	TD-32
	2.2.1	STM-16-Empfangssignal	TD-32
	2.2.2	OC-48-Empfangssignal	TD-32
	2.2.3	Descrambling	TD-32
	2.3	Meßarten	TD-33
	2.3.1	Alarmerkennung (Defekte)	TD-33
	2.3.2	Fehlermessungen (Anomalien)	TD-33
	2.3.3	Auswertung des Section Overhead (SOH) #1, Transport Overhead (TOH) #1	TD-34
•	0		
3	-	ner Leistungsteiler BN 3035/90.49	
	3.1	Wellenlängenbereiche	
	3.2	Dämpfung	TD-35
4	Drop&I	nsert/Through Mode (Durchgangsbetrieb)	TD-36
	4.1	Funktionen	TD-36
	4.1.1	Takterzeugung	
	4.1.2	Overhead-Erzeugung	TD-38
	4.1.3	Fehlereinblendung (Anomalien)	TD-38
	4.1.4	Alarmerzeugung (Defekte)	TD-38
	4.1.5	Messungen	TD-38

	4.2	SignalausgängeTD-	-39
	4.2.1	Signalausgang [15], elektrischTD-	-39
	4.2.2	Signalausgang "LINE/AUXILIARY" [13], elektrischTD-	-39
	4.3	Signaleingänge	-40
	4.3.1	Signaleingang "AUXILIARY" [10], elektrischTD-	-40
	4.3.2	Signaleingang "LINE/AUXILIARY" [12], elektrisch TD-	-41
5	Ergänzı	ungen für SOHTD-	-42
	5.1	SendeteilTD-	-42
	5.1.1	Overhead-Erzeugung	42
	5.1.1.1	Section Overhead (SOH), Transport Overhead (TOH)TD-	-42
	5.1.2	Fehlereinblendung (Anomalien)	-43
	5.2	Empfangsteil	-45
	5.2.1	Auswertung des Section Overhead (SOH),	
		Transport Overhead (TOH)TD-	45
Ted	chnisch	e Daten STM-64/OC-192	
1	Sendete	eil	-47
•	1.1		
	1.1.1	Digitalsignal-Ausgang	
	1.1.1	Takterzeugung und Bitraten	
	1.2.1	Takterzeugung intern	
	1.2.1	Takterzeugung extern [101]	
	1.2.3	Bitrate	
	1.2.4	Taktausgang [102]	
	1.2.5	Rahmentriggerausgang [100]	
	1.3	SDH- und SONET-Sendesignale	
	1.3.1	STM-64-Sendesignal	
	1.3.2	OC-192-Sendesignal	
	1.3.3	Scrambling	
	1.3.4	Overhead-Erzeugung	
	1.3.4.1	ITU-T Standard	
	1.3.4.2	ANSI Standard	
	1.3.5	Fehlereinblendung (Anomalien)	
	1.3.6	Alarmerzeugung (Defekte)	

2	Empfa	ngsteilTD-58
	2.1	Signal-Eingang
	2.1.1	Signaleingang [113], optisch
	2.2	Ausgänge für Empfangstakt und RahmentriggerTD-59
	2.2.1	Taktausgang [112]TD-59
	2.2.2	Rahmentriggerausgang [110]
	2.3	SDH- und SONET-EmpfangssignaleTD-59
	2.3.1	STM-64-EmpfangssignalTD-59
	2.3.2	OC-192-EmpfangssignalTD-59
	2.3.3	DescramblingTD-59
	2.4	MeßartenTD-60
	2.4.1	Alarmerkennung (Defekte)TD-60
	2.4.2	Fehlermessungen (Anomalien)
	2.4.3	Auswertung des Section Overhead (SOH) #1 bis #64, Transport Overhead (TOH) #1 bis #192
3	Optisc	her Leistungsteiler BN 3035/90.49TD-62
	3.1	WellenlängenbereicheTD-62
	3.2	Dämpfung

Notizen:

Technische Daten STM-0/1/4/OC-1/3/12

Die in eckigen Klammern [...] geführten Zahlen bei den Meßanschlüssen entsprechen den Zahlen, die am Gerät aufgedruckt sind.

Kalibrierte Kenndaten sind mit *** markiert.

1 Sendeteil

1.1 Digitalsignal-Ausgang

1.1.1 Signalausgang [18], optisch

Anschluß	C)
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbinder	ste
Sendepegel ***	3m
Verminderung des Sendepegels bei Ausführung 2 Wellenlängen < 0,5 dl	3m
Pulsform des Sendesignals)57
Wellenlänge (umschaltbar, optionsabhängig)	
Laserklasse nach EN 60825-1:1994	1

Der Sender erfüllt die Bedingungen der ITU-T-G.957-Klassen L1.1, L1.2, L1.3, L4.1, L4.2, L4.3. Die Klassen S1.1, S1.2 sowie S4.1 und S4.2 können durch Vorschalten eines optischen Abschwächers oder durch Zwischenschalten des optischen Power Splitters BN 3035/90.49 erreicht werden.

Statusanzeige "LASER ON"

LED leuchtet, wenn der Lasersender aktiv ist.

1.2 Takterzeugung und Bitraten

1.2.1 Takterzeugung

siehe "Technische Daten" des Grundgeräts

1.2.2 Bitraten

Die Verfügbarkeit der Bitraten hängt von den eingebauten Optionen ab.

STM-4, OC-12	622,08 Mbit/s
STM-1, OC-3	155,52 Mbit/s
STM-0_OC-1	51 84 Mbit/s

1.3 SDH- und SONET-Sendesignale

- Erzeugung eines STM-4- oder STM-1-Signals entsprechend der ITU-T-Empfehlung G.707.
- Erzeugung eines STM-0-Signals entsprechend ITU-RF.750-3.
- Erzeugung eines OC-12-, OC-3- oder OC-1-Signals entsprechend dem GR-253-Bellcore-Standard.

1.3.1 STM-4-Sendesignal

Bildung des STM-4-Signals:

- STM-1-Signal, intern erzeugt x 4 (4 x AU-4 oder 12 x AU-3)
- ein STM-1-Signal, intern erzeugt (AU-4/AU-3), die anderen drei Zubringer mit HP-UNEQ belegt
- ein STM-1-Signal, intern erzeugt (AU-4/AU-3), die anderen drei Zubringer vom Empfänger
- STM-4-Signal komplett vom Empfänger

1.3.2 STM-1-Sendesignal

Bildung des STM-1-Signals:

- · STM-1-Signal, intern erzeugt
- STM-1-Signal komplett vom Empfänger

1.3.3 STM-0-Sendesignal

Bildung des STM-0-Signals:

- STM-0-Signal, intern erzeugt
- STM-0-Signal komplett vom Empfänger

1.3.4 OC-12-Sendesignal

Bildung des OC-12-Signals:

- STS-1-Signal, intern erzeugt x 12
- ein STS-1-Signal, intern erzeugt, die anderen elf Zubringer mit UNEQ belegt
- ein STS-1-Signal, intern erzeugt, die anderen elf Zubringer vom Empfänger
- STS-12-Signal komplett vom Empfänger
- STS-3c-Signal, intern erzeugt x 4 (Option BN 3035/90.70)
- ein STS-3c-Signal, intern erzeugt, die anderen mit UNEQ belegt
- ein STS-3c-Signal, intern erzeugt, die anderen vom Empfänger

1.3.5 OC-3-Sendesignal

Bildung des OC-3-Signals:

- · STS-3-Signal, intern erzeugt
- STS-3-Signal komplett vom Empfänger

Bildung des OC-3c-Signals: (Option BN 3035/90.70)

- STS-3c-Signal, intern erzeugt
- STS-3c-Signal komplett vom Empfänger

1.3.6 OC-1-Sendesignal

Bildung des OC-1-Signals:

- · STS-1-Signal, intern erzeugt
- STS-1-Signal komplett vom Empfänger

1.3.7 Scrambling

Das Scrambling erfolgt nach der ITU-T-Empfehlung G.707. Der Scrambler kann aus- oder eingeschaltet werden.

1.3.8 Overhead-Erzeugung

1.3.8.1 Section Overhead (SOH), Transport Overhead (TOH)

Standard-Overhead STM-4, OC-12 (hex)

	S O H, TOH																																			
1		A1 F6		A1 F6		A2 28	A2 28		A2 28		A2 28				A2 28	A2 28	A2 28	J0 C1 01	Z0 C1 AA	Z0 C1 AA	Z0 C1 AA	— AA	— AA	— AA	 AA	 AA	 AA	 AA	 AA							
2	B1 XX	— 00		E1 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	F1 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	 00									
3	D1 00	 00	 00	— 00	— 00	— 00	 00	 00	 00	— 00	 00	— 00	D2 00	— 00	— 00	 00	_	 00	_	_	 00	_	 00	-	D3 00	 00	— 00	— 00	— 00	 00	— 00	— 00	 00	— 00	— 00	
4a		H1 68	H1 68	H1 68	Y 9B	H2 00	H2 00	H2 00	H2 00	 FF	_	_	 FF	 FF	 FF	 FF	 FF	H3 00	H3 00	H3 00			H3 00	H3 00		H3 00	H3 00	_	H3 00							
4b	H1 68	H1 68	H1 68	H1 68	H1 68	H1 68	H1 68	H1 68	H1 68	H1 68	H1 68	H1 68	H2 00	H2 00	H2 00	H2 00	H2 00			H2 00					H3 00	H3 00	H3 00	НЗ	НЗ	H3 00	H3 00		H3 00	l	H3 00	H3 00
4c			H1 60	H1 60	H1 60	H1 60	H1 60		H1 60		H1 60			H2 00								H2 00			H3 00	H3 00	H3 00		H3 00	H3 00	H3 00	H3 00	H3 00	H3 00		H3 00
4d			H1 60	H1 60	Y 93	H2 00	H2 00		H2 00	 FF	— FF	— FF	 FF	— FF	 FF	 FF	 FF	H3 00	H3 00	H3 00				H3 00					H3 00							
5			B2 XX		B2 XX		K1 00	—	—	 00	-	—	 00	 00	 00	— 00	—	-	K2 00	 00	 00	— 00	-	 00	— 00	_	 00	— 00	— 00	 00						
6	D4 00	— 00	D5 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	D6 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00										
7	D7 00	<u></u>	 00	— 00	— 00	— 00	 00	— 00	 00	— 00	 00	— 00	D8 00	— 00	— 00	— 00	— 00	— 00	— 00	 00	 00	— 00	 00	 00	D9 00	 00	— 00	— 00	— 00	 00	— 00	— 00	 00	— 00	— 00	— 00
8	D1 0 00	00	 00	_ 00	 00	_ 00	 00	_ 00	 00	 00	 00	 00	D1 1 00	 00	 00	 00	 00	 00	 00	00	00	 00	 00	 00	D1 2 00	 00	 00	 00	 00	 00	 00	 00	 00	 00	_ 00	— 00
9	_		Z1 00		Z1 00			Z2 00			Z2 00					Z2 00		l	E2 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	 00	— 00	 00	— 00						

Tabelle TD-1 Belegung des SOH, TOH; STM-4, OC-12

XX: Eingeblendet über Parity-Bildung (B1, B2)

Zeile 4a: SDH-Pointer (AU-4)

Zeile 4b: SDH-Pointer (AU-3)

Zeile 4c: SONET-Pointer (STS-1 SPE)

Zeile 4d: SONET-Pointer (STS-3c)

H1 und H2 sind abhängig von der eingestellten Pointer-Adresse (dargestellt Pointer-Adresse = 0), H3 davon, ob eine Pointer-Aktion stattfindet.

Belegung der SOH-Bytes

Statisches Byte: alle außer B1, B2, H1, H2, H3
Overhead Sequenz m, n, p: alle außer B1, B2, H1, H2, H3

Trace Identifier:
 J0 (Länge = 16 Rahmen mit CRC7-Bildung)

Dynamisch mit einer

Quasi-Zufallsfolge PRBS11: E1, F1, E2 (Einzel-Byte)

• Dynamisch mit einer

Quasi-Zufallsfolge PRBS11: D1 bis D3, D4 bis D12 (Byte-Gruppe)

Dynamisch über

DCC/ECC-Schnittstelle, Bu [21] (V.11): E1, F1, E2 (Einzel-Byte)

Dynamisch über

DCC/ECC-Schnittstelle, Bu [21] (V.11): D1 bis D3, D4 bis D12, K1 bis K2 (Byte-Gruppe)

Standard-Overhead STM-1, STM-0, OC-3, OC-1

siehe Bedienungsanleitung "STM-1-Mappings/STS-1-Mappings"

1.3.9 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten des Grundgeräts können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate	Burst m, n (Rahmen)
B1 (STM-4, OC-12)	ja	2E-4 bis 1E-10	m = 1 bis 196000
B2 (STM-4, OC-12)	ja	2E-3 bis 1E-10	m = 1 bis 196000
MS-REI (STM-4) REI-L (OC-12)	ja	2E-3 bis 1E-10	m = 1 bis 196000

Tabelle TD-2 Einstellbare Anomalien, zusätzlich zum Grundgerät

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv.

1.3.10 Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen des Grundgeräts können folgende Defekte erzeugt werden:

Defekt	Test Sensor- Funktion	Test Sensor-Schwellen					
-	Ein/Aus	M in N	t1 t2				
LOS (optisch)	ja	M = 800 bis 7200 N = 1600 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
LOF-622	ja	M = 1 bis N - 1 N = 1 bis 8000 ¹⁾	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
RS-TIM (STM-4) TIM-L (OC-12)	ja	-	-				
MS-AIS (STM-4) AIS-L (OC-12)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
MS-RDI (STM-4) RDI-L (OC-12)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
1 im Lieferumfang der Optionen BN 3035/90.46, BN 3035/90.47 und BN 3035/90.48 enthalten							

Tabelle TD-3 Einstellbare Defekte, zusätzlich zum Grundgerät

Die Einblendung von **Alarmen** (Defekte) **und Fehlern** (Anomalien) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv.

1.4 Sendesignale für ADM-Tester

1.4.1 Optisches Sendesignal

Die Verfügbarkeit der Bitraten hängt von den eingebauten Optionen ab.
STM-4, OC-12
STM-1, OC-3
STM-0, OC-151,84 Mbit/s
Signalaufbau
Rahmenkennwort
Parity-Bildung
Section Overhead, Transport Overhead
Pointer-Value
Anpassung der "ss"-Bits auf
Path Overhead und Payload
Modifikationsmöglichkeiten
LASER ist schaltbar
Wellenlänge ist wählbar
Scrambler ist fest aufON

- Keine Frequenzoffset-Verstimmung
- Keine Modifikationen im Overhead
- Keine Pointer-Aktionen

1.4.2 PDH-Sendesignal

Das PDH-Sendesignal kann wie im Normalbetrieb eingestellt werden. Es bestehen keinerlei Einschränkungen.

2 Empfangsteil

2.1 Digitalsignal-Eingänge

2.1.1 Signaleingang [17], optisch

Anschluß
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbinder siehe Zubehörliste
Eingangsempfindlichkeit -8 bis -28 dBm STM-1 / OC-3 ***, STM-0 / OC-1. -8 bis -28 dBm STM-4 / OC-12 *** -8 bis -28 dBm
Max. zulässiger Eingangspegel+2 dBm
Wellenlänge1100 bis 1580 nm
Der Empfänger erfüllt die Bedingungen der ITU-T-G.957-Klassen S1.1, S1.2, S4.1, S4.2 und S4.3.

Jitterverträglichkeit

gemessen mit verscrambelten SDH- oder SONET-Signalen:

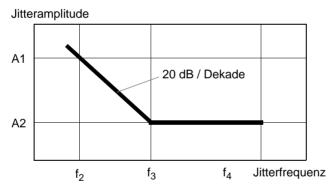


Bild TD-1 Jitteramplitude in Abhängigkeit von der Jitterfrequenz

Bitrate Mbit/s	A1 Ulpp	f ₂ kHz	A2 Ulpp	f ₃ kHz	f ₄ kHz
51,840	1,5	2	0,15	20	500
155,520	1,5	6,5	0,15	65	1300
622,080	1,5	25	0,15	250	5000

Tabelle TD-4 Jitterverträglichkeit des ANT-20SE bei Systembitraten

Pegelanzeige des optischen Signals

 Auflösung
 1 dBm

 Genauigkeit
 ±1 dBm

Statusanzeige "LOS" (Loss of signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

Hinweis: Durch die hohe Empfindlichkeit des optischen Eingangs kann es bei einzelnen Systemen vorkommen, daß statt LOS nur ein LOF erkannt wird. Dies ist auf die nicht vollständige Abschaltung des Lasersenders (System oder ANT-20SE) zurückzuführen.

Eine Möglichkeit, die Abschaltung dennoch zu testen, ist, ein zusätzliches optisches Dämpfungsglied vorzuschalten. Hierdurch wird das Restlicht soweit abgedämpft, daß es unterhalb der LOS-Schwelle liegt.

2.1.2 Signaleingang [16], elektrisch

 Anschluß
 unsymmetrisch (koaxial)

 Buchse
 SMA

 Innenwiderstand des Signaleingangs
 AC-gekoppelt, 50 Ω

 ab Serie AG
 Eingangswiderstand für ECL-Signale vorhanden

 Code
 NRZ (verscrambelt)

 Eingangsspannungsbereich
 200 mVpp bis 1Vpp

 Bitrate
 155,52 Mbit/s; 622,08 Mbit/s

Jitterverträglichkeit

siehe Tab. TD-4, Seite TD-8

Statusanzeige "LOS" (Loss of signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

2.1.3 Taktrückgewinnung

siehe "Technische Daten" des Grundgeräts

2.2 SDH- und SONET-Empfangssignale

- Auswertung eines STM-4- oder STM-1-Signals entsprechend der ITU-T-Empfehlung G.707.
- Auswertung eines STM-0-Signals entsprechend ITU-RF.750-3.
- Auswertung eines OC-12-, OC-3- oder OC-1-Signals entsprechend dem GR-253-Bellcore-Standard.

2.2.1 STM-4-Empfangssignal

Auswertung des STM-4-Signals:

- Analyse des Section Overhead (SOH) und Demultiplexen eines Kanals, weitere Analyse im Grundgerät
- Analyse des Section Overhead (SOH) und Durchschleifen des STM-4-Signals zum Sender

2.2.2 STM-1-Empfangssignal

Auswertung des STM-1-Signals:

· erfolgt im Grundgerät

2.2.3 STM-0-Empfangssignal

Auswertung des STM-0-Signals:

· erfolgt im Grundgerät

2.2.4 OC-12-Empfangssignal

Auswertung des OC-12-Signals:

- Analyse des Transport Overhead (TOH) und Demultiplexen eines Kanals, weitere Analyse im Grundgerät
- Analyse des Transport Overhead (TOH) und Durchschleifen des OC-12-Signals zum Sender

2.2.5 OC-3-Empfangssignal

Auswertung des OC-3-Signals:

· erfolgt im Grundgerät

Auswertung des OC-3c-Signals:

· erfolgt im Grundgerät

2.2.6 OC-1-Empfangssignal

Auswertung des OC-1-Signals:

• erfolgt im Grundgerät

2.2.7 Descrambling

Das Descrambling erfolgt nach der ITU-T-Empfehlung G.707. Der Descrambler kann ein- oder ausgeschaltet werden.

Tip: Bei unverscrambelten Eingangssignalen ist darauf zu achten, daß keine langen "Null"-oder "Eins"-Folgen im Datenstrom enthalten sind.

2.3 Meßarten

2.3.1 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen des Grundgeräts können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
LOS (optisch)	LOS
LOF-622	LOF/OOF
RS-TIM (STM-4) TIM-L (OC-12)	-
MS-AIS (STM-4) AIS-L (OC-12)	MS-AIS/AIS-L
MS-RDI (STM-4) RDI-L (OC-12)	MS-RDI/RDI-L

Tabelle TD-5 LED-Anzeige der zusätzlichen Defekte

2.3.2 Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen des Grundgeräts können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
OOF-622	LOF/OOF
B1 (STM-4, OC-12)	B1/B2
B2 (STM-4, OC-12)	B1/B2
MS-REI (STM-4) REI-L (OC-12)	-

Tabelle TD-6 LED-Anzeigen der zusätzlichen Anomalien

Die Auswertung und Anzeige von B2-Fehlern (STM-4, OC-12) bezieht sich auf alle Meßkanäle gemeinsam.

2.3.3 Auswertung des Section Overhead (SOH), Transport Overhead (TOH)

Anzeige

• des kompletten SOH, TOH: hexadezimal

(vier kanalbezogene Teil-SOH/TOH)

des Trace Identifier J0 (STM-4/OC-12): ASCII, Klartext

Auswertung

Bitfehlermessung

• mit Quasi-Zufallsfolge PRBS11: E1, F1, E2 (Einzel-Byte)

• mit Quasi-Zufallsfolge PRBS11: D1 bis D3, D4 bis D12 (Byte-Gruppe)

Ausgabe

Die Ausgabe der Overhead-Kanäle erfolgt über die

• DCC/ECC-Schnittstelle, Bu [21] (V.11). E1, F1, E2 (Einzel-Byte)

• DCC/ECC-Schnittstelle, Bu [21] (V.11): D1 bis D3, D4 bis D12, K1 bis K2

(Byte-Gruppe)

3 Optischer Leistungsteiler BN 3035/90.49

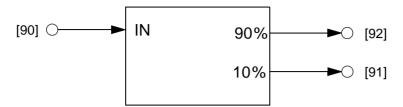


Bild TD-2 Optischer Leistungsteiler (Optical Power Splitter)

3.1 Wellenlängenbereiche

3.2 Dämpfung

4 Drop&Insert/Through Mode (Durchgangsbetrieb)/ Block&Replace

Option: BN 3035/90.20

4.1 Funktionen

Diese Option bietet folgende Funktionen für alle im ANT-20SE enthaltenen Mapping-Optionen.

Drop&Insert

Sender und Empfänger arbeiten unabhängig als Mapper/Demapper. Ein wählbarer Zubringer des empfangenen Signals wird ausgegeben. Ein extern zugeführter Zubringer wird in das Sendesignal eingefügt.

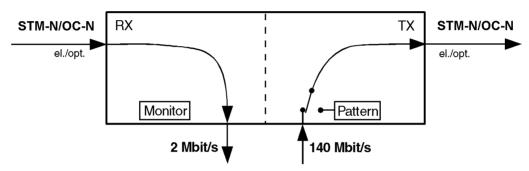


Bild TD-3 Drop&Insert: Sender und Empfänger arbeiten unabhängig voneinander

Zur Ausgabe und zum Einfügen von Zubringersignalen steht je ein unsymmetrischer Digitalausund -eingang am Grundgerät zur Verfügung (siehe Kap. 4.3.1, Seite TD-20 und Kap. 4.2.1, Seite TD-19).

Zusätzlich verfügt das Grundgerät über je einen symmetrischen Ausgang [13] und Eingang [12] für die Ausgabe und das Einfügen von Zubringersignalen über symmetrische Schnittstellen.

Through Mode (Durchgangsbetrieb)

Das empfangene Signal wird zum Sender geschleift (Durchgangsbetrieb). Ein Zubringersignal kann ausgegeben werden (Drop).

Der ANT-20SE kann im Durchgangsbetrieb auch als Signalmonitor eingesetzt werden, ohne daß der Signalinhalt beeinflußt wird.

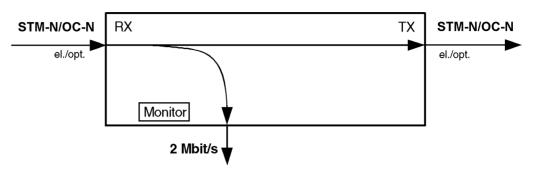


Bild TD-4 Durchgangsbetrieb: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "PDH MUX/DEMUX" und "M13 MUX/DEMUX", BN 3035/90.30 bis BN 3035/90.32 bietet der Zugang zu den Zubringerkanälen innerhalb der "MUX/DEMUX"-Kette. Dies gilt auch, wenn das PDH-Signal in einem Container übertragen wird.

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

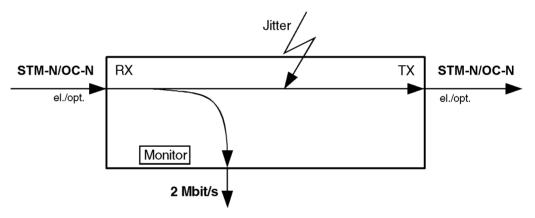


Bild TD-5 Through Mode: Durchgangssignal verjittert

Im Durchgangsbetrieb können im SOH/TOH Anomalien eingeblendet werden oder Manipulationen an den Bytes vorgenommen werden.

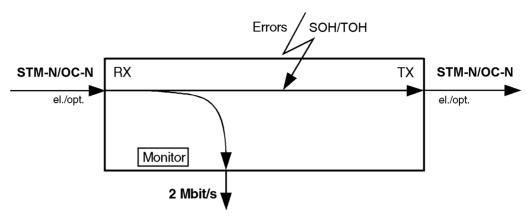


Bild TD-6 Through Mode: Fehlereinblendungen im SOH/TOH

Block&Replace

Nur möglich mit den SDH-Mappings C4 und C3 sowie den SONET-Mappings STS3c und STS1 SPE.

Sender und Empfänger sind gekoppelt. Das empfangene Signal wird vom Empfänger zum Sender durchgeschleift. Empfangsseitig wird der ANT-20SE als Meßkanalmonitor benutzt, sendeseitig wird der Meßkanal neu gebildet.

Bild TD-7 Block&Replace: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

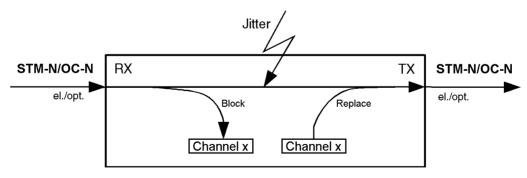


Bild TD-8 Block&Replace: Durchgangssignal verjittert

Im Block&Replace-Betrieb können im SOH/TOH Anomalien eingeblendet oder Manipulationen an den Bytes vorgenommen werden.

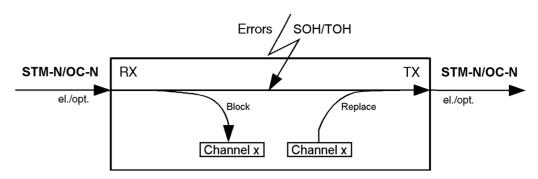


Bild TD-9 Block&Replace: Fehlereinblendungen im SOH/TOH

4.1.1 Takterzeugung

Drop&Insert

siehe "Technische Daten" des Grundgeräts

Through Mode

Im Through Mode steht die Takterzeugung fest auf "abgeleitet vom Empfangstakt". Eine Verstimmung des Sendesignals ist in dieser Betriebsart nicht zulässig (siehe "Technische Daten" des Grundgeräts).

4.1.2 Overhead-Erzeugung

Drop&Insert

siehe Kap. 1.3.8, Seite TD-4

Through Mode

Für alle Bytes außer den Bytes B1, B2 und M1 ist zu den beschriebenen Funktionen die Funktion "von Rx" einstellbar (siehe Kap. 1.3.8, Seite TD-4).

4.1.3 Fehlereinblendung (Anomalien)

Drop&Insert

siehe Kap. 1.3.9, Seite TD-5

Through Mode

Einblendung der Anomalien in die Bytes B1, B2 und MS-REI/REI-L. Grenzen der Einblendung (siehe Kap. 1.3.9, Seite TD-5).

4.1.4 Alarmerzeugung (Defekte)

Drop&Insert

siehe Kap. 1.3.10, Seite TD-6

Through Mode

Keine direkte Alarmerzeugung möglich.

Tip: Alarme (Defekte) im SOH/TOH können durch die Manipulation der Bytes erzeugt werden.

4.1.5 Messungen

Bei den Messungen gibt es keine Einschränkungen (siehe Kap. 2.3, Seite TD-11).

4.2 Signalausgänge

4.2.1 Signalausgang "AUXILIARY" [11], elektrisch

Anschluß	unsymmetrisch, (koaxial)
Buchse	BNC
Innenwiderstand des Signalausgangs	75 Ω
Max. zulässiger Scheitelwert der Fremdspannung	±5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgangsspannung		
E4	139,264	СМІ	± 0,5 V		
DS3	44,736	B3ZS	± 1,0 V		
E3	34,368	HDB3			
E2	8,448	HDB3	± 2,37 V		
E1	2,048	HDB3			
DS1	1,544	B8ZS			
Die Bitraten sind abhängig von den Mapping-Optionen.					

Tabelle TD-7 Kenngrößen des Signalausgangs "AUXILIARY" [11], elektrisch

4.2.2 Signalausgang "LINE/AUXILIARY" [13], elektrisch

Anschluß sy	mmetrisch
Buchse	. Lemo SA (Bantam)
Innenwiderstand des Signalausgangs 2,048 Mbit/s	
Max. zulässiger Scheitelwert der Fremdspannung	± 5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgangsspannung		
E1	2,048	HDB3	± 3,0 V		
DS1	1,544	B8ZS	DSX-1 compatible		
Die Bitraten sind abhängig von den Mapping-Optionen.					

Tabelle TD-8 Kenngrößen des Signalausgangs "LINE/AUXILIARY" [13], elektrisch

Der symmetrische Ausgang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Ausgang verwendet.

4.3 Signaleingänge

4.3.1 Signaleingang "AUXILIARY" [10], elektrisch

Anschluß unsymmetrisch, (koaxial)
BuchseBNC
Innenwiderstand des Signaleingangs
Max. zulässiger Frequenzoffset
Eingangsspannungsbereich 0 dB Dämpfung bezogen auf Nennpegel
Max. zulässiger Scheitelwert der Eingangsspannung±5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung		
E4	139,264	СМІ	1,0 V ±10 %		
DS3	44,736	B3ZS	1,0 V ±10 %		
E3	34,368	HDB3			
E2	8,448	HDB3	2,37 V ±10 %		
E1	2,048	HDB3			
DS1	1,544	B8ZS			
Die Bitraten sind abhängig von den Mapping-Optionen.					

Tabelle TD-9 Kenngrößen des Signaleingangs "AUXILIARY" [10], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

4.3.2 Signaleingang "LINE/AUXILIARY" [12], elektrisch

Anschluß	symmetrisch
Buchse	Lemo SA, (Bantam)
Innenwiderstand des Signaleingangs	
2,048 Mbit/s	
1,544 Mbit/s	100 Ω
Max. zulässiger Frequenzoffset	± 500 ppm
Max. Anzahl aufeinanderfolgender Nullen bei Code = AMI	15
Max. zulässiger Scheitelwert der Eingangsspannung	± 5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung		
E1	2,048	HDB3	3,0 V ±10 %		
DS1	1,544	B8ZS			
Die Bitraten sind abhängig von den Mapping-Optionen.					

Tabelle TD-10 Kenngrößen des Signaleingangs "LINE/AUXILIARY" [12], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

Der symmetrische Eingang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Eingang verwendet.

Notizen:

Technische Daten STM-16/OC-48

Die in eckigen Klammern [...] geführten Zahlen bei den Meßanschlüssen entsprechen den Zahlen, die am Gerät aufgedruckt sind.

Kalibrierte Kenndaten sind mit *** markiert.

1 Sendeteil

1.1 Digitalsignal-Ausgang

1.1.1 Signalausgang [47], optisch

L16.1.

Anschluß
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbinder
Sendepegel ***
Pulsform des Sendesignals nach ITU-T G.957
Wellenlänge (umschaltbar, optionsabhängig)
Laserklasse nach EN 60825-1:1994, Normalbetrieb
Der Sender erfüllt die Bedingungen der ITU-T-G.957-Klassen S16.2, L16.2, L16.3, bzw. S16.1,

Statusanzeige "LASER ON"

LED leuchtet, wenn der Lasersender aktiv ist.

1.1.2 Signalausgang [46], elektrisch

Anschluß
BuchseSMA
Innenwiderstand des Signalausgangs
Code
Ausgangsspannung≥ 500 mVpp
Bitrate

1.2 Takterzeugung und Bitraten

1.2.1 Takterzeugung intern

siehe "Technische Daten" des Grundgeräts

1.2.2 Takterzeugung extern [45]

Für die Einspeisung eines mit Jitter modulierten Taktes, der vom Takt des Basismoduls abgeleitet sein muß.

1.2.3 Bitrate

1.2.4 **Taktausgang** [41]

Für den Generatortakt

Frequenz
Anschluß unsymmetrisch (koaxial)
Buchse
Innenwiderstand
Ausgangsspannung ≥ 300 mVpp

1.3 SDH- und SONET-Sendesignale

- Erzeugung eines STM-16-Signals entsprechend der ITU-T-Empfehlung G.707.
- Erzeugung eines OC-48-Signals entsprechend den Standards Bellcore-GR-253 und ANSI T1.105.

1.3.1 STM-16-Sendesignal

Bildung des STM-16-Signals:

- STM-1-Signal, intern erzeugt x 16 (16 x AU-4 oder 48 x AU-3)
- ein STM-1-Signal, intern erzeugt (AU-4/AU-3), die anderen 15 Zubringer mit HP-UNEQ belegt
- ein STM-1-Signal, intern erzeugt (AU-4/AU-3), die anderen 15 Zubringer vom Empfänger

Bildung des STM-16c-Signals:

STM-16-Signal komplett vom Empfänger

1.3.2 OC-48-Sendesignal

Bildung des OC-48-Signals:

- STS-1-Signale, intern erzeugt und STS-1-Signale mit UNEQ belegt
- STS-3c-Signal, intern erzeugt x 16
- ein STS-3c-Signal, intern erzeugt, die anderen 15 Zubringer mit UNEQ belegt
- STS-1-Signale, intern erzeugt, die anderen 47 Zubringer mit UNEQ belegt
- STS-48-Signal direkt vom Empfänger
- ein STS-3c-Signal, intern erzeugt, die anderen 15 Zubringer vom Empfänger

1.3.3 Scrambling

Das Scrambling erfolgt nach der ITU-T-Empfehlung G.707. Der Scrambler kann nicht ausgeschaltet werden.

1.3.4 Overhead-Erzeugung

1.3.4.1 Section Overhead (SOH), Transport Overhead (TOH)

Section Overhead STM-16, OC-48

siehe Tab. TD-11, Seite TD-27

Die Einstellungen sind nur im SOH #1, TOH #1 möglich.

Davon sind die Bytes A1, A2, B1, B2 sowie die komplette Pointerzeile (H1, H2, H3) ausgenommen.

XX: Eingeblendet über Parity-Bildung (B1, B2)

Zeile 4a: SDH-Pointer (AU-4)

Zeile 4b: SDH-Pointer (AU-3)

Zeile 4c: SONET-Pointer (STS-1 SPE)

Zeile 4d: SONET-Pointer (STS-3c)

Zeile 9: Die Bezeichnungen Z1 und Z2 werden nur bei SONET verwendet.

H1 und H2 sind abhängig von der eingestellten Pointer-Adresse (dargestellt Pointer-Adresse = 0), H3 davon, ob eine Pointer-Aktion stattfindet.

Belegung der Overhead-Bytes

• Statisches Byte: alle außer B1, B2, H1, H2, H3

Trace Identifier:
 J0 (Länge = 16 Rahmen mit CRC7-Bildung)

 Dynamisch mit einer Quasi-Zufallsfolge PRBS11 (nur möglich, wenn der Kanal #1

des STM-N-/OC-Signals ausgewählt wird): D1 bis D3, D4 bis D12 (Byte-Gruppe)

Dynamisch über DCC/ECC-Schnittstelle
 Dynamisch über DCC/ECC-Schnittstelle
 Dynamisch über DCC/ECC-Schnittstelle

Bu [40] (V.11): E1, F1, E2 (Einzel-Byte)

Dynamisch über DCC/ECC-Schnittstelle
 Pu [40] (// 11):

Bu [40] (V.11): D1 bis D3, D4 bis D12, K1 bis K2

(Byte-Gruppe)

Standard-Overhead STM-1, OC-3, OC-1

siehe Bedienungsanleitung "STM-1-Mappings/STS-1-Mappings"

	#16	: ≸	: 8	: 8	8 H3	£ 8	8 H3	8 H3	: 8	: 8	: 8	: 8	: 0
	-	- A	- 00 - 0	: 00 . C	3 H3	3 H3	3 H3	3 H3	: 00	: 0	: 00 : 0	: 0	c
	#	۰ ۸ ۱ ۸	- 00	- 00	3 H3	3 H3	3 H3	3 H3	: 00	- 00	: 00	: 00	00
		\{	00	: 0	3 H3	3 H3	3 H3	3 H3	: 0	: 0	- 00	: 0	00
	# 9	 	: 8	: 8	8 H3	8 H3	8 H 8 O	8 H 8 H 9 H	: 8	: 8	: 8	: 8	- 00
	#16	20 10 10	: 8	: 8	8 H3	유 8	8 H3	8 H3	: 8	: 8	: 8	: 8	: 00
	#15	22 P	: 8	: 8	8 3	유용	8 3	8 3	18	: 8	: 8	: 8	: 0
	#14	828 828	: 00	: 00	H3 00	유 8	H3 00	H3 00	: 00	: 00	: 00	90	00
	#13	20 C1 C1	00	: 8	H3 00	H3 00	H3 00	H3 00	: 8	: 0	: 8	:- 00	
	#12	20 C1 0C	00	00	H3 00	H3 00	H3 00	H3 00	00		00	00	00
	#11	8 8 8		: 00	H3 00	H 9	H3 00	H3 00	: 00	: 00	: 00	00	
	#10	02 C C C C C C C C C C C C C C C C C C C	: 00	: 0	H3	H3	H3	H3	: 00	: 00	- 00	: 8	00
	6#	8 2 3	: 8	: 8	8 H3	8 H3	8 H3	8 H3	: 8	: 8	: 8	: 8	: 00
	8#	20 C1 08		- 00	H3 00	H3 00	H3 00	H3 00	- 00	- 00	- 00	- 00	
	2#	Z0 C1 07	00 		Н3 00	Н3 00	H3 00	Н3 00	00				
	9#	8.28	00	: 8	유 8	8 H	H3	유 8	: 8	: 8	: 8	: 00	
	45	20 C1 05	00	00	H3 00	H3 00	H3 00	H3 00	00		00	00	
	#	822	: 8	: 8	H3 00	H3 00	H3 00	H3 00	: 8	: 8	: 8	: 8	: 8
포	#3	828	- 00	- 00	H30	H 00	H3	H300	: 00	- 00	00	: 8	
, T	#2	20 20 20	90	: 00	유 응	유용	88	유 응	: 00	: 0	: 00	: 8	00
вон, тон	#	322	F1 00	D3	H3	H3 00	H3	H3 00	8 2	00 00	00 00	D12 00	E2 00
	:	A2 28		: 8	: H	H2 00	H2 00	: 出	: 8	: 00	: 8	: 8	Z2 00
	#	A2 28	: 8	: 8	: 世	H2 00	H2 00	! 壯	: 8	: 8	: 8	: 8	Z2 00
	:	A2 28	- 8	: 8	: 出	9 HZ	H2 00	: 出	: 8	: 8	: 8	: 8	, Z2 00
	#	2 A2	: 8	: 8	- 出	2 HZ	2 HZ	: 出	: 8	: 8	: 8	: 8	2 Z2 0 00
	:	2 A2 3 28	00	: 0	2 H2 0 00	2 H2	2 H2	2 H2 0 00	: 0	: 0	: 0	: 0	2 Z2) 00
	#	2 A2 3 28	00	: 0	2 H2	2 H2	2 HZ	2 H2	: 0	: 0	- 00	: 0	1 Z2) 00
	2 #3	2 A2 8 28	00	: 00	H2 H2 00	H2 H2 00	H2 H2 00	H2 H2 00	: 00	: 00 : 00	00 00	: 00	2 M1 0 00
	1 #2	A2 A2 28 28	E1	D2 00 00	H2 00 0	H2 00 0	H2 00 0	H2 00 0	₹ 8 8 9	D5	D8 :-		Z2 Z2 00 00
	#	A1 A F6 2											
	#	A1 A F6 F	00 00	: 00	Y	H 88 88		× × 83		: 00 : 00	: 00	00 00	Z1 Z1 00 00
	#	A1 A F6 F	- 00	: 0	≻ 88		H1 60 6				: 0	- 00	Z1 Z 00 0
	#	A1 A	: 8	: 8	_	H H 68	H 60		B2 XX X		: 8	: 8	Z1 Z 00 0
	#16 #	A1 A F6 F	: 00	: 8	H 88	H H 89	H 60	H 89	XX X	1 8	: 8	: 0	Z1 Z
	#	A1 A	. 00	- 00	H1 68 6	H1 H	H H 9	H1 H	B2 X	- 00	: 00	: 00	Z1 Z 00 C
	#3	A1 A F6 F	- 00	- 00	H 89	H 68 6		H 60 6	B2 XX		- 00	: 0	Z1 Z
	#5 #	A1 A F6 F	. 00	: 8	H1 68 6	H1 F	H1 60	H1 60 6	XX E		: 00	: 8	Z1 Z
	#1	A1 / F6 F	XX (C	90	H 68 68	H1 H	H1 H		B2 E	400		D10 00	S1 Z
	зон	~	2	က	4a	4b	40	44	2	9	7	∞	6

Tabelle TD-11 Belegung des SOH, TOH; STM-16, OC-48

1.3.5 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten des Grundgeräts können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate	Burst m, n (Rahmen)
B1 (STM-16, OC-48)	ja	1E-8 bis 2E-5	m = 1 bis 196000
B2 (STM-16, OC-48)	ja	1E-8 bis 1E-3	m = 1 bis 196000
MS-REI (STM-16) REI-L (OC-48)	ja	1E-8 bis 1E-3	m = 1 bis 196000

Tabelle TD-12 Einstellbare Anomalien, zusätzlich zum Grundgerät

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv.

1.3.6 Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen des Grundgeräts können folgende Defekte erzeugt werden:

Defekt	Test Sensor-Funktion	Test Sensor-Schwellen		
-	Ein/Aus	M in N	t1 t2	
LOS (optisch)	ja	M = 800 bis 7200 N = 1600 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s	
LOF-2488	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s	
RS-TIM (STM-16) TIM-L (OC-48)	ja	-	-	
MS-AIS (STM-16) AIS-L (OC-48)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s	
MS-RDI (STM-16) RDI-L (OC-48)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s	

Tabelle TD-13 Einstellbare Defekte, zusätzlich zum Grundgerät

Die Einblendung von **Alarmen** (Defekte) **und Fehlern** (Anomalien) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv.

1.4 Sendesignale für ADM-Tester

1.4.1 **Optisches Sendesignal**

STM-16, OC-48	2488,32 Mbit/s			
Signalaufbau				
Rahmenkennwort	48 x A1, 48 x A2			
Parity-Bildung	B1, B2, B3			
Section Overhead, Transport Overhead	Standard Overhead, siehe Kap. 1.3.4, Seite TD-26			
Pointer-Value				
Anpassung der "ss"-Bits auf	STM-x/AU-4, STM-x/AU-3, OC-x			
Path Overhead und Payload	HP-UNEQuipped (Dauer "0")			
Modifikationsmöglichkeiten				
LASER ist schaltbar	ON/OFF			
Umschaltbare Wellenlänge (optionsabhängig)	1310 nm oder 1550 nm			
Scrambler ist fest auf	ON			
Keine Frequenzoffset-Verstimmung				

- Keine Modifikationen im Overhead
- Keine Pointer-Aktionen

1.4.2 **PDH-Sendesignal**

Das PDH-Sendesignal kann wie im Normalbetrieb eingestellt werden. Es bestehen keinerlei Einschränkungen.

2 Empfangsteil

2.1 Digitalsignal-Eingänge

2.1.1 Signaleingang [44], optisch

Vorsicht

Zerstörung des Eingangs [44]

Der maximal zulässige Eingangspegel von -8 dBm darf nicht überschritten werden, da sonst der optische Eingang zerstört werden kann.

- ⇒ Fügen Sie deshalb unbedingt einen optischen Abschwächer ein:
 - beim Schleifenbetrieb RX TX
 - bei höheren Eingangspegeln

Anschluß			
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbinder siehe Zubehörliste			
Eingangsempfindlichkeit STM-16/OC-48 ***			
Max. zulässiger Eingangspegel8 dBm			
Wellenlänge1100 bis 1600 nm			
Der Empfänger erfüllt die Bedingungen der ITU-T-G.957-Klassen S16.2, L16.2, L16.3 bzw. S16.1, und L16.1.			
Pegelanzeige des optischen Signals			
Auflösung			
Genauigkeit			
Statusanzeige "LOS" (Loss of signal)			
LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.			
Schwollo für "LOS"			

2.1.2 Signaleingang [43], elektrisch

Anschluß unsymmetrisch (koaxial)
Buchse
Innenwiderstand des Signaleingangs50 Ω
Code
Eingangsspannungsbereich
Bitrate

Statusanzeige "LOS" (Loss of signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

2.1.3 **Taktausgang [42]**

Für den rückgewonnenen Empfangstakt

Bitrate
Anschluß unsymmetrisch (koaxial)
Buchse
Innenwiderstand
Ausgangsspannung

2.2 SDH- und SONET-Empfangssignale

- Auswertung eines STM-16-Signals entsprechend der ITU-T-Empfehlung G.707.
- Auswertung eines OC-48-Signals entsprechend den Standards Bellcore-GR-253 und ANSI T1.105.

2.2.1 STM-16-Empfangssignal

Auswertung des STM-16-Signals:

- Analyse des SOH und Demultiplexen eines STM-1-Kanals, weitere Analyse im Grundgerät
- Analyse des SOH und Durchschleifen des STM-16-Signals zum Sender

2.2.2 OC-48-Empfangssignal

Auswertung des OC-48-Signals:

- Analyse des TOH und Demultiplexen eines Kanals, weitere Analyse im Grundgerät
- Analyse des TOH und Durchschleifen des OC-48-Signals zum Sender

2.2.3 Descrambling

Das Descrambling erfolgt nach der ITU-T-Empfehlung G.707. Der Descrambler kann nicht ausgeschaltet werden.

2.3 Meßarten

2.3.1 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen des Grundgeräts können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
LOS (optisch)	LOS
LOF-2488	LOF/OOF
RS-TIM (STM-16) TIM-L (OC-48)	-
MS-AIS (STM-16) AIS-L (OC-48)	MS-AIS/AIS-L
MS-RDI (STM-16) RDI-L (OC-48)	MS-RDI/RDI-L

Tabelle TD-14 LED-Anzeige der zusätzlichen Defekte

2.3.2 Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen des Grundgeräts können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
OOF-2488	LOF/OOF
B1 (STM-16, OC-48)	B1/B2
B2 (STM-16, OC-48)	B1/B2
MS-REI (STM-16) REI-L (OC-48)	-

Tabelle TD-15 LED-Anzeigen der zusätzlichen Anomalien

Die Auswertung und Anzeige von B2-Fehlern (STM-16, OC-48) bezieht sich auf alle Meßkanäle gemeinsam.

2.3.3 Auswertung des Section Overhead (SOH) #1, Transport Overhead (TOH) #1

Anzeige

• des SOH #1, TOH #1: hexadezimal

mit Ausnahme von: A1, A2, B1, B2, H1 bis H3

• des Trace Identifier J0 (STM-16, OC-48): ASCII, Klartext

Auswertung

Bitfehlermessung

 mit Quasi-Zufallsfolge PRBS11 (nur möglich, wenn der Kanal #1 des

STM-N-/OC-Signals ausgewählt wurde): D1 bis D3, D4 bis D12 (Byte-Gruppe)

Ausgabe

Die Ausgabe der Overhead-Kanäle erfolgt über die

• DCC/ECC-Schnittstelle Bu [40] (V.11): E1, F1, E2 (Einzel-Byte)

• DCC/ECC-Schnittstelle Bu [40] (V.11): D1 bis D3, D4 bis D12, K1 bis K2

(Byte-Gruppe)

3 Optischer Leistungsteiler BN 3035/90.49

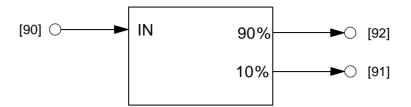


Bild TD-10 Optischer Leistungsteiler (Optical Power Splitter)

3.1 Wellenlängenbereiche

"1310 nm"	1260 bis 1360 nm
"1550 nm"	1500 bis 1600 nm

3.2 Dämpfung

4 Drop&Insert/Through Mode (Durchgangsbetrieb)

Option: BN 3035/90.20

4.1 Funktionen

Diese Option bietet folgende Funktionen für alle im ANT-20SE enthaltenen Mapping-Optionen.

Drop&Insert

Sender und Empfänger arbeiten unabhängig als Mapper/Demapper. Ein wählbarer Zubringer des empfangenen Signals wird ausgegeben. Ein extern zugeführter Zubringer wird in das Sendesignal eingefügt.

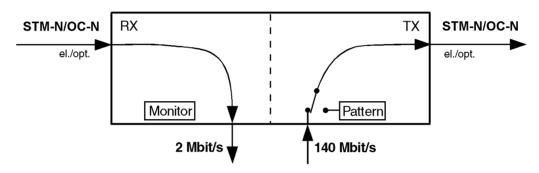


Bild TD-11 Drop&Insert: Sender und Empfänger arbeiten unabhängig voneinander

Zur Ausgabe und zum Einfügen von Zubringersignalen steht je ein unsymmetrischer Digitalausund -eingang am Grundgerät zur Verfügung (siehe Kap. 4.3.1, Seite TD-40 und Kap. 4.2.1, Seite TD-39).

Zusätzlich verfügt das Grundgerät über je einen symmetrischen Ausgang [13] und Eingang [12] für die Ausgabe und das Einfügen von Zubringersignalen über symmetrische Schnittstellen.

Through Mode (Durchgangsbetrieb)

Das empfangene Signal wird zum Sender geschleift (Durchgangsbetrieb). Ein Zubringersignal kann ausgegeben werden (Drop).

Der ANT-20SE kann im Durchgangsbetrieb auch als Signalmonitor eingesetzt werden, ohne daß der Signalinhalt beeinflußt wird.

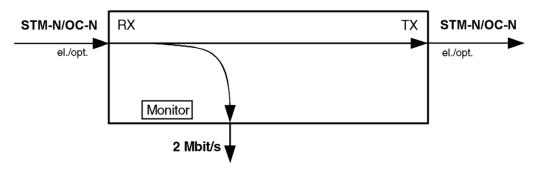


Bild TD-12 Durchgangsbetrieb: Sender und Empfänger gekoppelt

In Verbindung mit den Optionen "PDH MUX/DEMUX" und "M13 MUX/DEMUX", BN 3035/90.30 bis BN 3035/90.32 bietet der ANT-20SE Zugang zu den Zubringerkanälen innerhalb der "MUX/DEMUX"-Kette. Dies gilt auch, wenn das PDH-Signal in einem Container übertragen wird.

In Verbindung mit den Optionen "Jittergenerator bis 155 bzw. 622 Mbit/s", BN 3035/90.60 bis 61 kann im Durchgangsbetrieb ein empfangenes Signal verjittert werden. Dies gilt für alle im Gerät vorhandenen Bitraten.

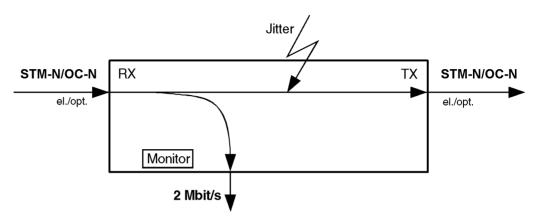


Bild TD-13 Through Mode: Durchgangssignal verjittert

Im Durchgangsbetrieb können im SOH/TOH Anomalien eingeblendet werden oder Manipulationen an den Bytes vorgenommen werden.

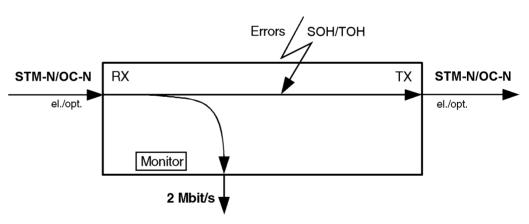


Bild TD-14 Through Mode: Fehlereinblendungen im SOH/TOH

4.1.1 Takterzeugung

Drop&Insert

siehe "Technische Daten" des Grundgeräts

Through Mode

Im Through Mode steht die Takterzeugung fest auf "abgeleitet vom Empfangstakt". Eine Verstimmung des Sendesignals ist in dieser Betriebsart nicht zulässig (siehe "Technische Daten" des Grundgeräts).

4.1.2 Overhead-Erzeugung

Drop&Insert

siehe Kap. 1.3.4, Seite TD-26

Through Mode

Für alle Bytes außer den Bytes B1, B2 und M1 ist zu den beschriebenen Funktionen die Funktion "von Rx" einstellbar (siehe Kap. 1.3.4, Seite TD-26).

4.1.3 Fehlereinblendung (Anomalien)

Drop&Insert

siehe Kap. 1.3.5, Seite TD-28

Through Mode

Einblendung der Anomalien in die Bytes B1, B2 und MS-REI/REI-L. Grenzen der Einblendung (siehe Kap. 1.3.5, Seite TD-28).

4.1.4 Alarmerzeugung (Defekte)

Drop&Insert

siehe Kap. 1.3.6, Seite TD-28

Through Mode

Keine direkte Alarmerzeugung möglich.

Tip: Alarme (Defekte) im SOH können durch die Manipulation der Bytes erzeugt werden.

4.1.5 Messungen

Bei den Messungen gibt es keine Einschränkungen (siehe Kap. 2.3, Seite TD-33).

4.2 Signalausgänge

4.2.1 Signalausgang [15], elektrisch

Anschluß	unsymmetrisch, (koaxial)
Buchse	BNC
Innenwiderstand des Signalausgangs	75 Ω
Max. zulässiger Scheitelwert der Fremdspannung	± 5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Ausgangsspannung
E4	139,264	СМІ	± 0,5 V
DS3	44,736	B3ZS	± 1,0 V
E3	34,368	HDB3	
E2	8,448	HDB3	± 2,37 V
E1	2,048	HDB3	
DS1	1,544	B8ZS	
Die Bitraten sind	abhängig von den Mapping	-Optionen.	

Tabelle TD-16 Kenngrößen des Signalausgangs [15], elektrisch

4.2.2 Signalausgang "LINE/AUXILIARY" [13], elektrisch

Anschluß sy	mmetrisch
Buchse	. Lemo SA (Bantam)
Innenwiderstand des Signalausgangs 2,048 Mbit/s	

Schnittstelle	Bitrate (Mbit/s)	itrate (Mbit/s) Code			
E1	2,048	HDB3	± 3,0 V		
DS1	1,544	B8ZS	DSX-1 compatible		
Die Bitraten sind abhängig von den Mapping-Optionen.					

Tabelle TD-17 Kenngrößen des Signalausgangs "LINE/AUXILIARY" [13], elektrisch

Der symmetrische Ausgang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Ausgang verwendet.

4.3 Signaleingänge

4.3.1 Signaleingang "AUXILIARY" [10], elektrisch

Anschluß unsymmetrisch, (koaxial)
BuchseBNC
Innenwiderstand des Signaleingangs
Max. zulässiger Frequenzoffset
Eingangsspannungsbereich
Max. zulässiger Scheitelwert der Eingangsspannung±5 V

Schnittstelle	Bitrate (Mbit/s)	Code	Eingangsspannung		
E4	139,264	СМІ	1,0 V ±10 %		
DS3	44,736	B3ZS	1,0 V ±10 %		
E3	34,368	HDB3			
E2	8,448	HDB3	2,37 V ±10 %		
E1	2,048	HDB3			
DS1	1,544	B8ZS			
Die Bitraten sind abhängig von den Mapping-Optionen.					

Tabelle TD-18 Kenngrößen des Signaleingangs "AUXILIARY" [10], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

4.3.2 Signaleingang "LINE/AUXILIARY" [12], elektrisch

Anschluß	symmetrisch
Buchse	Lemo SA (Bantam)
Innenwiderstand des Signaleingangs 2,048 Mbit/s	120 Ω 100 Ω
Max. zulässiger Frequenzoffset	. \pm 500 ppm
Max. Anzahl aufeinanderfolgender Nullen bei Code = AMI	
Max. zulässiger Scheitelwert der Eingangsspannung	± 5 V

Schnittstelle	nittstelle Bitrate (Mbit/s) Code		Eingangsspannung		
E1	2,048	HDB3	3,0 V ±10 %		
DS1 1,544		B8ZS			
Die Bitraten sind abhängig von den Mapping-Optionen.					

Tabelle TD-19 Kenngrößen des Signaleingangs "LINE/AUXILIARY" [12], elektrisch

Statusanzeige "LOS" (Loss of Signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

Der symmetrische Eingang wird sowohl als "LINE"- wie auch als "AUXILIARY"-Eingang verwendet.

5 Ergänzungen für SOH

Diese Ergänzungen betreffen folgende Optionen:

- BN 3035/91.53
- BN 3035/91.54
- BN 3035/91.59

5.1 Sendeteil

5.1.1 Overhead-Erzeugung

5.1.1.1 Section Overhead (SOH), Transport Overhead (TOH)

Section Overhead STM-16, OC-48

siehe Tab. TD-21, Seite TD-44

Die Einstellungen sind im gesamten SOH, TOH möglich. Davon sind die Bytes B1, B2 sowie die komplette Pointerzeile (H1, H2, H3) ausgenommen.

XX: Eingeblendet über Parity-Bildung (B1, B2)

Zeile 4a: SDH-Pointer (AU-4)

Zeile 4b: SDH-Pointer (AU-3)

Zeile 4c: SONET-Pointer (STS-1 SPE)

Zeile 4d: SONET-Pointer (STS-3c)

Zeile 4e: SDH-Pointer (AU-4, VC-4-4c)

Zeile 4f: SONET-Pointer (STS-12c SPE)

Zeile 4g: SDH-Pointer (AU-4, VC-4-16c)

Zeile 4h: SONET-Pointer (STS-48c SPE)

Zeile 9: Die Bezeichnungen Z1 und Z2 werden nur bei SONET verwendet.

H1 und H2 sind abhängig von der eingestellten Pointer-Adresse (dargestellt Pointer-Adresse = 0), H3 davon, ob eine Pointer-Aktion stattfindet.

Belegung der Overhead-Bytes

• Statisches Byte: alle außer B1, B2, H1, H2, H3

• Overhead Sequenz m, n, p: alle außer B1, B2, H1, H2, H3

Trace Identifier:
 J0 (Länge = 16 Rahmen mit CRC7-Bildung)

• Dynamisch mit einer Quasi-Zufallsfolge

PRBS11:

E1, F1, E2

D1 bis D3, D4 bis D12 (Byte-Gruppe)

Dynamisch über DCC/ECC-Schnittstelle

Bu [21] (V.11):

E1, F1, E2 (Einzel-Byte)

Dynamisch über DCC/ECC-Schnittstelle
 Total (1/14)

Bu [21] (V.11):

D1 bis D3, D4 bis D12, K1 bis K2

(Byte-Gruppe)

5.1.2 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten des Grundgeräts können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate	Burst m, n (Rahmen)
B1 (STM-16, OC-48)	ja	1E-10 bis 2E-5	m = 1 bis 196000
B2 (STM-16, OC-48)	ja	1E-10 bis 2E-3	m = 1 bis 196000
MS-REI (STM-16) REI-L (OC-48)	ja	1E-10 bis 2E-3	m = 1 bis 196000

Tabelle TD-20 Einstellbare Anomalien, zusätzlich zum Grundgerät

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv.

	#16	: ≸	. 0	. 0	00 H3	00 H3	00 H3	9 H	9 H	80	00 H3	0 H3	. 0	. 0	. 0	. 0	: 00
			- 00	: 00						3 H3			00	- 00	- 00	00	
	-	1 &	- 00	- 00	3 0 0 0 0	3 H3	3 0 0 0	3 0 0 0 0	3 0 0 0 0	3 9 9 9 9	3 0 0 0 0	3 H3	c	- 00	- 00	- c	: 00 : 0
	<u>#</u>	- 4 - 4	1 00	1 00	3 0 9 8	3 0 0 0	3 0 9 9	3 0 0 0 0	3 8 8	3 8	88	3 0 8 9 9	- 00	1 00	1 00	- 00	1 8
	:	- 4 - 4	1 00	1 00	3 0 9 8	3 0 0 0	3 0 9 9	3 0 0 0 0	3 8 8	3 8	3 0 9 8	3 0 8 9 9	- 00	1 00	1 00	- 00	1 8
	#	1 A	- 8	- 8	3 3	3 8 8 8 8	3 13	3 13	3 13	3 13	3 3	8 8	- 00	- 8	- 8	- 00	- 8
	2 #16	826	: 8	: 8	유용	운 8	운 8	운 8	운 8	운 8	유용	운 8	- 00	: 8	: 8	- 00	18
	#	공 5 5 5 8			유 8	8 원	유 8	유 8	운 8	유 8	유 8	8 원	00 			00	- 8
	#14	공28	: 8	: 8	H 90	H3	H 90	9 H	8 H	8 H	H 90	H3 00		: 00	: 00	: 00	: 00
	#13	328	18	18	운 8	운 8	운 8	운 8	운 8	유 유	운 8	운 응	- 8	18	18	1 8	1 8
	#15#	328	: 8	: 8	원 8	유 00	원 8	운 8	운 8	9 원	원8	유 8	00	: 8	: 8	- 00	: 00
	#	328			H3 00	H 00	H3	H3 00	H3 00	H3 00	H3 00	H3	00				: 00
	#10	52 9A	- 8	- 8	8	00 EH	8	8 8 8	8 원	H3	8	00 EH	00 	- 8	- 8	00 	- 8
	6#	J0 C1 09	00	00	00 00	00 ЕН	00 00	00 00	00 00	00 00	00 00	00 EH	00	00	00	00	00
	8#	J0 C1 08	00	00	00 00	00 ЕН	00 00	00 00	00 00	00 00	00 00	00 EH	00	00	00	00	00
	1 #2	Jo C1 07			H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00					- 00
	9#	J0 C1 06	00	00	00 00	00 ЕН	00 00	00 00	00 00	00 00	00 00	00 EH	00	00	00	00	00
	9#	J0 C1 05	00	00	00 00	00 ЕН	00 00	00 00	00 00	00 00	00 00	00 EH	00	00	00	00	00
	#4	Jo C1 04			H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00					- 00
	#3	Jo C1 03			H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00					- 00
	#2	J0 C1 02	00	00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	00	00	00		00
	#	Jo C1 01	F1 00	D3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	H3 00	S &	D6 00	D9 00	D12 00	E2 00
	-:-	28 A2	: 00	: 00	: #	H2 00	H2 00	: 12	: #	: 1:	: #	: #		: 00	: 00	00	8 23
	#	28 A2	: 00	: 00	: 12	H2 H	H2 00	: 12	1 11	1 111	: 12	1 11	00	: 00	: 00	00	22 00
		28 A2	: 00	1 00	: E	H2 00	H2 00	: 1:	: 1:	: #	: E	- 11		: 00	: 00		22 00
	#	28 A2	: 00	: 00	: 12	H2 H	H2 00	: 12	1 11	1 11	: 1:	- 11	00	: 00	: 00	00	22 00
	#16	28 /2	18	1 00	2 S	7 O	2 S	2 S	1 111	1 111	1 111	1 11	- 00	- 00	1 00	- 00	22 8
	#12	28 /	: 00	: 00	00 H2	H2 00	00 H2	00 H	: #	: #	: 1:	: #	- 00	: 00	: 00	- 00	
												_	_				0 22
	# 4	A2 28	: 8	: 8	요 또	8	9 년	일 8	- 11	- 11	: E	<u></u>		: 8	: 8		8 23
	#13	A2 28	- 8	- 00	8 8 8	H2 00	8 F	8 F	8 12	8 12	 FF	44 	00		- 8	00	22
포	#12	2 A2	: 00	: 8	H2 00	H2 00	H2 00	0 H	: 出	: 世	: 世	: 世		: 00	: 00	: 00	22
вон, тон	#11	A2 28	- 80	- 80	8 12	90 PZ	9 F	9 F	1 111	: 11	: E	- 11		- 8	- 80		22
Ε̈́	#10	28 A2	: 8	: 8	8 F2	H2 00	8 F2	8 12	: #	: 12	: 1:	: #	: 8	: 8	: 8	: 00	8 23
S	-#	28 7	- 0	1 8	7 O	7 8 2 8	7 8 2 8	7 8 2 8	2 8 8 E	7 8 8 F	1 11	- 11	00	- 00	- 0	00	22 00
	-#	A2 A2 28 2	1 8	1 8	28 8 E	7 8 2 8	2 S	2 S	1 11	1 11	1 15	1 15	- 00	1 8	1 8	- 00	7 00
	-#	28 A2	1 8	- 8	2 8 2 8	00 PF 00	2 S	7 8 2 8	1 11	1 11	1 12	1 11	- 80	- 8	1 8	- 00	22 8
	9#	28 A	1 8	- 8	2 8 2 8	0 F	¥ 8	H 8	1 11	1 11	1 12	1 11	- 80	- 8	1 8	- 00	22 8
	#2#	28 /	1 8	18	보 8	7 8 2 8	보 8	보 8	8 12	8 12	1 12	- 11	- 00	1 8	1 8	- 8	22 8
	#	2 A2	18	18	원8	2 0 2 P	원 8	원8	1 111	1 111	1 12	1 12	1 8	18	18	1 8	8 23
	#3	28 /	1 8	18	2 8 2 8	7 8 2 8	보 8	보 8	1 111	1 111	1 12	- 11	- 00	1 8	1 8	- 8	M400
	#5	2 A2	18	18	원8	2 0 2 P	원 8	원8	1 111	1 111	1 12	1 12	1 8	18	18	1 8	28
	#	28 A2	E 00	D2 00	H2 00	H2 00	H2 00	H2 00	H2 00	H2 00	H2 00	H2 00	Σ 00	D5 00	00	00	220
	:	A1 /	: 00	: 00	> 8	H 89	H 09	> 8	> 8	> 6	> 8	> 6	X BS	: 00	: 00	: 00	Z1 Z 00 0
	#	A1 A	- 00	- 00	> 8 > 8	H1 68 68	H1 60 60	> 6	> 8 8	> 6	> 8 > 8	> 6	XX X	- 00	- 00	00	Z1 Z 00 0
	-#	A1 A	- 00	- 00	> 8 > 8	H1 68 68	H1 60 60	> 6	> 8 8	> 6	> 8 > 8	> 6	XX X	- 00	- 00	00	Z1 Z 00 0
	<u>+</u>	A1 A	: 00	: 00	> 8 > 8	H 9 89	H1 60 60	> 6	> 86	> 6	> 8 > 8	> 6	X B2	: 00	: 00	- 00	Z1 Z 00 00
	9	A1 /	1 8	1 8	F 89	H 89	E 8	F 8	> 8	> 8	> 8	> 6	X B2	- 8	1 8	- 00	21 2
	#								_		_					_	
	¥	- A1	: 00	: 00	H H 89	1 H1	H 0	H 0	> B	> 68	> 8 8	7 83	XX XX	: 00	: 00	00	21 00
	#14	A1 F6	: 8	: 8	F 88	H 68	H 8	H 00	> 8 B	> &	≻ 0 0	> 8	XX XX	: 8	: 8	: 8	27
	#13	A1 F6			H 68	H 89	H 60	H 09	H 89	H 09	≻ 8	> 8	82 XX	- 00		- 00	Z1 00
	#12	A1 F6			H1 68	H1 68	H1 60	H1 60	≻ 86	7 893	≻ 86	7 83	B2 XX				Z1 00
	#	A1 F6	- 8	- 8	H 89	H 89	H 89	H 8	≻ 8 8	> 8	≻ 8 8	> 8	X B	: 8	- 8	- 00	21
	#10#	A1 F6	- 8	: 8	E 88	E 88	8 1	8 1	> B	> 8	> B	> 8	X B2	- 8	- 8	- 8	21
	-#	A1 /	- 00	1 8	H 89	H 89	H 99	1 9	F 89	H 09	> 8 3	× 86	X B2	- 00	- 00	- 00	21 2 00 0
	-#	A1 A	18	1 8	H 89	H 68	H 99	H 9	> B	> 8	> 8 6	> 8	X B2	- 8	18	- 8	21 2
	# 2#	A1 /	18	18	H 68	H1 H	H 09	H 09	> 8 6	> 8	> 8 8	> 8	XX X	18	18	- 00	27 00 0
	9#	A1 /	18	18	H 89	H 89	H 8	H 8	> 8 8	> 8	> 8 8	> 8	X B	18	18	1 8	27
	¥2	A1 ,	18	18	H 88	H 68	H 8	H 8	H 88	H 8	> 8 B	> 8	X X	18	18	- 8	21
	#	A1 F6	- 8	- 8	H 68	H1 68	H 89	H 09	≻ ⁶ 8	> 8	≻ ⁸ B	93	B2 XX	- 8	- 8	00	Z1 00
	#3	A1 F6	9	9	H1 68	H1 68	H 60	H 60	≻ ⁶	> 8	≻ ⁶ B	¥ 93	B2 XX	: 8	9	00 	Z1 00
	#2	A1 F6	- 00	: 00	H 68	H1 68	H 60	H 60	≻ ⁸	≻ 8	≻ ⁶ 8	Y 93	B2 XX	- 00	- 00		Z1 00
	#	A1 F6	₽× ×	D1 00	H1 68	H1 68	H 60	H1 60	H1 68	H1 60	H1 68	H 60	B2 XX	D4 00	D7 00	D10 00	S1 00
	SOH	-	7	9	4a	4b	4 _C	4d	4e	4f	49	4h	2	9	7	8	6
	ő				4	4	4	4	4		4	4					

Tabelle TD-21 Belegung des SOH, TOH; STM-16, OC-48

5.2 Empfangsteil

5.2.1 Auswertung des Section Overhead (SOH), Transport Overhead (TOH)

Anzeige

• des SOH, TOH: hexadezimal

• des Trace Identifier J0 (STM-16, OC-48): ASCII, Klartext

Auswertung

Bitfehlermessung

• mit Quasi-Zufallsfolge PRBS11: E1, F1, E2

D1 bis D3, D4 bis D12 (Byte-Gruppe)

Ausgabe

Die Ausgabe der Overhead-Kanäle erfolgt über die

• DCC/ECC-Schnittstelle Bu [21] (V.11): E1, F1, E2 (Einzel-Byte)

• DCC/ECC-Schnittstelle Bu [21] (V.11): D1 bis D3, D4 bis D12, K1 bis K2

(Byte-Gruppe)

Notizen:

Technische Daten STM-64/OC-192

Die optische Schnittstelle STM-64/OC-192 schließt folgende Optionen ein:

- OC-12c/STM-4c Bit Error Testing BN 3035/90.90
- OC-48c/STM-16c Bit Error Testing BN 3035/90.93

Die in eckigen Klammern [...] geführten Zahlen bei den Meßanschlüssen entsprechen den Zahlen, die am Gerät aufgedruckt sind.

Kalibrierte Kenndaten sind mit *** markiert.

1 Sendeteil

1.1 Digitalsignal-Ausgang

1.1.1 Signalausgang [103], optisch

Anschluß	2,5 mm (PC)
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbinder	siehe Zubehörliste
Sendepegel ***	0 dBm ±1 dBm
Wellenlänge	.1550 nm (1520 bis 1580 nm)
Laserklasse nach EN 60825-1:1994, Normalbetrieb	

Statusanzeige "LASER ON"

LED leuchtet, wenn der Lasersender aktiv ist.

1.2 Takterzeugung und Bitraten

1.2.1	Takterzeugung intern
	siehe "Technische Daten" des Grundgeräts
	Zulässige Verstimmung
1.2.2	Takterzeugung extern [101]
	rancoizougung oxtorn [101]
	Für die Einspeisung eines mit Jitter modulierten Taktes, der vom Takt des Basismoduls abgeleitet sein muß.
	Taktfrequenz
	Anschluß
	BuchseSMA
	Innenwiderstand des Takteingangs
	Eingangsspannungsbereich 100 mVpp bis 600 mVpp
1.2.3	Bitrate
	STM-64/OC-192
1.2.4	Taktausgang [102]
	Für den Generatortakt
	Frequenz
	Anschlußunsymmetrisch (koaxial)
	BuchseSMA
	Innenwiderstand
	Ausgangsspannung≥50 mVpp
1.2.5	Rahmentriggerausgang [100]
	Ausgangsspannung bei Leerlauf
	BuchseBNC
	Innenwiderstand

1.3 SDH- und SONET-Sendesignale

- Erzeugung eines STM-64-Signals entsprechend der ITU-T-Empfehlung G.707
- Erzeugung eines OC-192-Signals entsprechend den Standards Bellcore-GR-1377

1.3.1 STM-64-Sendesignal

Bildung des STM-64-Signals:

- ein AUG1-Signal (STM-1-Ebene), intern erzeugt x 64 (64 x AU-4 oder 192 x AU-3)
- ein AUG4-Signal (STM-4c-Ebene)¹, intern erzeugt x 16 (16 x AU-4-4c)
- ein AUG16-Signal (STM-16c-Ebene)¹, intern erzeugt x 4 (4 x AU-4-16c)
- ein AUG1-Signal (STM-1-Ebene), intern erzeugt (AU-4 oder AU-3), die anderen 63 AUG1-Signale mit HP-UNEQ belegt
- ein AUG4-Signal (STM-4c-Ebene)¹, intern erzeugt, die anderen 60 AUG1-Signale mit HP-UNEQ belegt
- ein AUG16-Signal (STM-16c-Ebene)¹, intern erzeugt, die anderen 48 AUG1-Signale mit HP-UNEQ belegt
- 1 Siehe auch Bedienungsanleitung "Concatenated Mappings OC-12c/STM-4c OC-48c/STM-16c"

1.3.2 OC-192-Sendesignal

Bildung des OC-192-Signals:

- ein STS-1-Signal, intern erzeugt x 192
- ein STS-3c-Signal, intern erzeugt x 64
- ein STS-12c-Signal¹, intern erzeugt x 16
- ein STS-48c-Signal¹, intern erzeugt x 4
- ein STS-1-Signal, intern erzeugt, die anderen 191 STS-1-Signale mit HP-UNEQ belegt
- ein STS-3c-Signal, intern erzeugt, die anderen 189 STS-1-Signale mit HP-UNEQ belegt
- ein STS-12c-Signal¹, intern erzeugt, die anderen 180 STS-1-Signale mit HP-UNEQ belegt
- ein STS-48c-Signal¹, intern erzeugt, die anderen 144 STS-1-Signale mit HP-UNEQ belegt
- 1 Siehe auch Bedienungsanleitung "Concatenated Mappings OC-12c/STM-4c OC-48c/STM-16c"

1.3.3 Scrambling

Das Scrambling erfolgt nach ITU-T-Empfehlung G.707, ANSI Standard T1.105 und Bellcore G-253.

Der Scrambler kann nicht ausgeschaltet werden.

1.3.4 Overhead-Erzeugung

Overhead STM-64/OC-192

siehe Tab. TD-22, Seite TD-51

Ausnahmen: • Die Pointerzeile kann vom Benutzer im SOH (#1 bis #64) bzw. im TOH (#1 bis #192) nicht definiert werden.

 Bei der Byte-Sequenz "SQ" sind Einstellungen nur im Bereich #1 bis #16 (SOH) bzw. #1 bis #48 (TOH) möglich.

Belegung der Overhead-Bytes

Statisches Byte: alle außer B1, B2, H1, H2, H3

Trace Identifier:
 J0 (Länge = 16 Rahmen mit CRC7-Bildung)

 Dynamisch mit einer Quasi-Zufallsfolge PRBS11 (nur möglich, wenn der Kanal #1

des STM N (OC Signals ausgewählt wird)

des STM-N-/OC-Signals ausgewählt wird): D1 bis D3, D4 bis D12 (Byte-Gruppe)

 Dynamisch über DCC/ECC-Schnittstelle Bu [21] (V.11):

E1, F1, E2 (Einzel-Byte)

 Dynamisch über DCC/ECC-Schnittstelle Bu [21] (V.11):

D1 bis D3, D4 bis D12, K1 bis K2 (Byte-Gruppe)

Standard-Overhead STM-1, OC-3, OC-1

siehe Bedienungsanleitung "STM-1-Mappings/STS-1-Mappings"

Zeile 4 des SOH/POH

Die Zeile 4 ist abhängig vom eingestellten Mapping. Entsprechende Angaben finden Sie in Kap. 1.3.4.1, Seite TD-52 und Kap. 1.3.4.2, Seite TD-55.

H1 und H2 sind abhängig von der eingestellten Pointer-Adresse (dargestellte Pointer-Adresse = 0), H3 davon, ob eine Pointer-Aktion stattfindet.

	#64	#192	: {	- 00	: 00	8 H	: 00	- 00	: 00	1 %	- 00
	:	:	; {	: 00	: 8	유용	: 8	: 8	: 8	: 8	: 8
	#1	#129	- AA	- 00	1 00	유 0	1 00	1 00	- 00	1 00	- 00
	#64	#128	+ A	00	100	일 0	100	1 00	- 00	1 8	00
	:	:	+ A	00	00 	H3 00	00 	00 	00 	: 8	
	#	#65	- A	00	- 00	유 0	- 00	- 00		1 8	- 00
	. #64	. #64	- C1 40	- 00	1 8	8 H3	1 8	- 00	- 00	1 8	- 8
	#	#	. C1	: 00	- 00	8 H3	- 00	: 8	: 00	: 8	: 00
	3 #14	414	20 C1 0	- 8	1 8	£ 8	- 8	- 8	- 8	1 8	- 00
	2 #13	2 #13	0 0 0 0 0	- 8	- 00	£ 8	- 8	- 8	- 8	1 8	- 00
	1 #12	1 #12	20 3 - 20 8 - 30	- 00	- 00	8 H 8 H 8 H	- 00	1 8	1 8	1 8	- 00
	0 #11	#11	20 C1 OB	- 00	- 00	3 H3	- 00	- 00	- 00	: 8	- 00
	9 #10	#10	0 C1	- 00	- 00	3 H3 00	00	00	- 00	: 0	- 00
	8#	# #	Z0 Z0 C1 C1 08 09	00 00	00 00	H3 H3	00 00	00 00	00 00	: 00	00 00
	##	# 2#	Z0 Z C1 C 07 0	00 00	0 00	H3 00	0 00	00 00	00 00	0 00	0 00
	# 9#	9#	Z0 Z C1 C	00	00	H3 F	00	00	00	1 00	- 00
	42	¥	Z0 C1 05	00	: 00	H3	: 00	: 00	: 00	: 8	: 00
	#4	##	20 C1 04	00	00	H3 00	00	00	00	1 00	
	#3	#3	Z0 C1 03	00	00	H3 00	00	00	00	- 00	
	#2	#2	20 C1 02		: 8	H3	: 8	: 8	: 00	: 8	: 8
I	#	#	9 5 5 5	F1 00	00	H 00	8.2	90	60	D12 00	E2 00
7	#64	#192	A2 28	: 00	: 8		: 8	: 8	: 00	1 8	8 8
зон, тон	:		A2 28		: 00		: 00	: 00	: 00	: 8	22
0)	#	3 #129	A2 28		: 8		: 8			18	8 8
	#64	#128	A2 28	00	00		00	00	00	: 00	Z2 00
	:	:	A2 28	- 00	: 00		: 00	1 00	- 00	1 8	8 8
	#	9# 1	A2 28			-55		- 00		1 00	22 00
	#64	#64	A2 28	- 00	- 00	.3.4.2, Seite TD-55	- 00	- 00	- 00	- 00	22 00
	.:	:	2 A2 8 28	- 00	00	.2, Se	00	- 00	- 00	: 00	2 Z2 0 00
	3 #4	ε #	2 A2 8 28	00 0	- 00	1.3.4	- 00	- 00	- 00	- 00	11 Z2 0 00
	#2 #3	#2 #3	A2 A2 28 28	00 00	00 00	Кар.	00 00	00 00	00 00	100	Z2 M1 00 00
	#	#	A2 <i>H</i> 28 28	E1 00	00	52 bis	7.8	00	80	00 (22 20 00
	#64	#192	A1 F6	- 00	- 00	e TD-€	B2 XX	1 00	- 00	1 00	21 00
	:	:	A1 F6	: 8	: 8	, Seit	X 82	: 8	: 8	1 8	Z1 00
	#1	#129	A1 F6		: 00	1.3.4.1	XX XX	: 00	: 00	: 8	Z1 00
	#64	#128	A1 F6	- 00	1 8	siehe Kap. 1.3.4.1, Seite TD-52 bis	X B	1 8	1 8	18	21
	:	:	A1 F6	000		siehe	B2 XX			: 8	Z1 00
	#	#65	A1 F6	00	00		B2 XX		00	1 8	Z1 00
	#64	#64	A1 F6	- 8	: 8		X 82	: 8	: 8	18	Z1 00
	:	:	A1 F6	- 00	- 00		XX XX	- 00	- 00	1 8	Z1 00
	#3	¥	A1 F6	- 00	- 00		XX XX	- 00	- 00	1 8	21 00
	1 #2	# #	1 A1 6 F6	1 ×	1 00		X BZ	100	00 0	1 00 0	1 Z1 0 00
	#	±	A1 F6	XX	90		B2 XX	4 <u>0</u>	D7 00	D10 00	S1 00
	SOH	TOH	-	2	ო	4	5	9	7	ω	6

Tabelle TD-22 Belegung des SOH, TOH; STM-64/OC-192

1.3.4.1 ITU-T Standard

STM-0-Ebene

Container = VC3, VC2, VC12, VC11/TU12, VC11/TU11

Overhead	#1							
H1	-	-	H2	-	-	H3	-	-
XX	-	-	XX	-	-	XX	-	-

STM-1-Ebene

AU-3, Container = VC3, VC2, VC12, VC11/TU12, VC11/TU11

Overhead #1									
Н	11	H1	H1	H2	H2	H2	H3	H3	H3
X	Х	XX							

AU-4, Container = VC4, VC3, VC2, VC12, VC11/TU12, VC11/TU11

Overhead #1										
H1	Υ	Υ	H2	-	-	H3	H3	H3		
XX	XX	XX	XX	XX	XX	XX	XX	XX		

STM-4-Ebene

AU-3, Container = VC3, VC2, VC12, VC11/TU12, VC11/TU11

Overhead #1, #2, #3, #4									
H1	H1	H1	H2	H2	H2	H3	НЗ	H3	
XX	XX	XX	XX	XX	XX	XX	XX	XX	

AU-4, Container = VC4, VC3, VC2, VC12, VC11/TU12, VC11/TU11

Overhead #1, #2, #3, #4										
	H1	Υ	Υ	H2	-	-	H3	H3	H3	
	XX									

AU-4, Container = VC4c

Overhead	#1							
H1	Υ	Υ	H2	-	-	H3	H3	H3
XX	XX	XX	XX	XX	XX	XX	XX	XX

Overhead #2, #3, #4									
Υ	Υ	Υ	-	-	-	H3	H3	H3	
XX	XX	XX	XX	XX	XX	XX	XX	XX	

AU-4, Container = VC4v

Overhead #1,#2 #3, #4									
H1	Υ	Υ	H2	-	-	H3	H3	H3	
XX	XX	XX	XX	XX	XX	XX	XX	XX	

STM-16-Ebene

AU-3, Container = VC3, VC2, VC12, VC11/TU12, VC11/TU11

Overhead	Overhead #1bis #16										
H1	H1	H1	H2	H2	H2	H3	H3	H3			
XX	XX	XX	XX	XX	XX	XX	XX	XX			

AU-4, Container = VC4, VC3, VC2, VC12, VC11/TU12, VC11/TU11

Overhead #1 bis #16										
H1	Υ	Υ	H2	-	-	H3	H3	H3		
XX	XX	XX	XX	XX	XX	XX	XX	XX		

AU-4, Container = VC4c

Overhead #1, #5, #9, #13									
H1	Υ	Υ	H2	-	-	НЗ	H3	H3	
XX	XX	XX	XX	XX	XX	XX	XX	XX	

Overhead	Overhead #2, #3, #4, #6, #7, #8, #10, #11, #12, #14, #15, #16											
Y Y Y H3 H3 H3												
xx xx xx xx xx xx xx xx xx												

AU-4, Container = VC16c

Overhead #1											
H1	Υ	Υ	H2	-	-	H3	H3	H3			
XX	XX	XX	XX	XX	XX	XX	XX	XX			

Overhead	Overhead #2 bis #16											
Y Y H3 H3 H3												
xx xx xx xx xx xx xx xx												

STM-64-Ebene

AU-3, Container = VC3, VC2, VC12, VC11/TU12, VC11/TU11

Overhead	Overhead #1bis #64											
H1 H1 H2 H2 H2 H3 H3 H3												
XX	XX	XX	XX	XX	XX	XX	XX	XX				

AU-4, Container = VC4, VC3, VC2, VC12, VC11/TU12, VC11/TU11

	Overhead #1 bis #64											
H1 Y Y H2 H3 H3 H3									H3			
	XX	XX	XX	XX	XX	XX	XX	XX	XX			

AU-4, Container = VC4c

Ove	Overhead #1, #5, #9, #13, #17, #21, #25, #29, #33, #37, #41, #45, #49, #53, #57, #61										
H1 Y Y H2 H3 H3 H3									H3		
xx xx xx xx xx xx							XX	XX	XX		

Overhead #2, #3, #4, #6, #7, #8, #10, #11, #12, #14, #15, #16, #18, #19, #20, #22, #23, #24, #26, #27, #28, #30, #31, #32, #34, #35, #36, #38, #39, #40, #42, #43, #44, #46, #47, #48, #50, #51, #52, #54, #55, #56, #58, #59, #60, #62, #63, #64

Υ	Υ	Υ	-	-	-	H3	H3	НЗ
XX								

AU-4, Container = VC16c

	Overhead #1, #17, #33, #49											
H1 Y Y H2 H3 H3 H3									H3			
	XX	XX	XX	XX	XX	XX	XX	XX	XX			

Overhead	Overhead #2 bis #16, #18 bis #32, #34 bis #48, #50 bis #64										
Y Y H3 H3 H3											
xx xx xx xx xx xx xx xx xx											

1.3.4.2 ANSI Standard

STS-1 (OC-1)

Container = STS1SPE, VT6SPE, VT2SPE, VT1.5SPE

	Overhead #1											
	H1	-	-	H2	-	-	H3	-	-			
Ī	XX	-	-	XX	-	-	XX	-	-			

STS-3 (OC-3)

Container = STS1SPE, VT6SPE, VT2SPE, VT1.5SPE

Overhead	Overhead #1, #2, #3											
H1 H2 H3												
XX	-	1	XX	1	-	XX	-	-				

Container = STS3cSPE

Ove	Overhead #1											
H1 H1 H2 H2 H2 H3 H3 H3									H3			
XX		XX										

STS-12 (OC-12)

Container = STS1SPE, VT6SPE, VT2SPE, VT1.5SPE

Overhead #1 bis #12								
H1	-	-	H2	-	-	H3	-	-
XX	-	-	XX	-	-	XX	-	-

Container = STS3cSPE, STS12cSPE, STS12vSPE

Overhead #1 bis #4								
H1	H1	H1	H2	H2	H2	H3	H3	H3
XX	XX	XX	XX	XX	XX	XX	XX	XX

STS-48 (OC-48)

Container = STS1SPE, VT6SPE, VT2SPE, VT1.5SPE

Overhead #1 bis #48								
H1	-	-	H2	-	-	H3	-	-
XX	-	-	XX	-	-	XX	-	-

Container = STS3cSPE, STS12cSPE, STS48cSPE

Overhead	Overhead #1 bis #16								
H1	H1	H1	H2	H2	H2	H3	H3	H3	
XX	XX	XX	XX	XX	XX	XX	XX	XX	

STS-192 (OC-192)

Container = STS1SPE, VT6SPE, VT2SPE, VT1.5SPE

Overhead #1 bis #192								
H1	-	-	H2	-	-	H3	-	-
XX	-	-	XX	-	-	XX	-	-

Container = STS3cSPE, STS12cSPE, STS48cSPE

Overhead #1 bis #64								
H1	H1	H1	H2	H2	H2	H3	H3	H3
XX	XX	XX	XX	XX	XX	XX	XX	XX

1.3.5 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten des Grundgeräts können folgende Anomalien eingeblendet werden:

Anomalie	Single	Rate	Burst m, n (Rahmen)
B1 (STM-64/OC-192)	ja	1E-10 bis 2E-5	m = 1 bis 196000
B2 (STM-64/OC-192)	ja	1E-10 bis 1E-3	m = 1 bis 196000
MS-REI (STM-64) REI-L (OC-192)	ja	1E-10 bis 1E-3	m = 1 bis 196000

Tabelle TD-23 Einstellbare Anomalien, zusätzlich zum Grundgerät

Die Einblendung von **Fehlern** (Anomalien) **und Alarmen** (Defekten) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv.

1.3.6 Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen des Grundgeräts können folgende Defekte erzeugt werden:

Defekt	Test Sensor-Funktion	Test Sensor-Schwellen	
-	Ein/Aus	M in N	t1 t2
LOS (optisch)	ja	M = 800 bis 7200 N = 1600 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
LOF-9953	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
RS-TIM (STM-64) TIM-L (OC-192)	ja	-	-
MS-AIS (STM-64) AIS-L (OC-192)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s
MS-RDI (STM-64) RDI-L (OC-192)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s

Tabelle TD-24 Einstellbare Defekte, zusätzlich zum Grundgerät

Die Einblendung von **Alarmen** (Defekten) **und Fehlern** (Anomalien) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv.

2 Empfangsteil

2.1 Signal-Eingang

2.1.1 Signaleingang [113], optisch

Vorsicht

Zerstörung des Eingangs [113]

Der maximal zulässige Eingangspegel von 0 dBm darf nicht überschritten werden, da sonst der optische Eingang zerstört werden kann.

⇒ Fügen Sie deshalb bei höheren Eingangspegeln unbedingt einen optischen Abschwächer ein.

Anschluß					
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbinder siehe Zubehörliste					
Eingangsempfindlichkeit STM-64/OC-192 ***					
Max. zulässiger Eingangspegel0 dBm					
Wellenlänge1500 bis 1600 nm					
Pegelanzeige des optischen Signals					
Pegelanzeige des optischen Signals					
Pegelanzeige des optischen Signals Auflösung					
Auflösung					
Auflösung.					

2.2 Ausgänge für Empfangstakt und Rahmentrigger

2.2.1 Taktausgang [112]

Für den rückgewonnenen Empfangstakt

itrate9953,28 MHz
nschluß unsymmetrisch (koaxial)
suchse
nnenwiderstand
usgangsspannung

2.2.2 Rahmentriggerausgang [110]

Ausgangsspannung bei Leerlauf	. CMOS-Pegel
Buchse	BNC
Innenwiderstand	ca. 50 Ω

2.3 SDH- und SONET-Empfangssignale

- Auswertung eines STM-64-Signals entsprechend der ITU-T-Empfehlung G.707
- Auswertung eines OC-192-Signals entsprechend den Standards Bellcore-GR-1377

2.3.1 STM-64-Empfangssignal

Auswertung des STM-64-Signals:

 Analyse des SOH und Demultiplexen eines STM-1-Kanals, weitere Analyse im Grundgerät

2.3.2 OC-192-Empfangssignal

Auswertung des OC-192-Signals:

 Analyse des TOH und Demultiplexen eines STS-1- oder STS-3c-Kanals, weitere Analyse im Grundgerät

2.3.3 Descrambling

Das Descrambling erfolgt nach ITU-T-Empfehlung G.707, ANSI Standard T1.105 und Bellcore GR-253.

Der Descrambler kann nicht ausgeschaltet werden.

2.4 Meßarten

2.4.1 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen des Grundgeräts können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
LOS (optisch)	LOS
LOF-9953	LOF/OOF
RS-TIM (STM-64) TIM-L (OC-192)	-
MS-AIS (STM-64) AIS-L (OC-192)	MS-AIS/AIS-L
MS-RDI (STM-64) RDI-L (OC-192)	MS-RDI/RDI-L

Tabelle TD-25 LED-Anzeige der zusätzlichen Defekte

2.4.2 Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen des Grundgeräts können folgende Anomalien ausgewertet und angezeigt werden:

Anomalie	LED
OOF-9953	LOF/OOF
B1 (STM-64/OC-192)	B1/B2
B2 (STM-64/OC-192)	B1/B2
MS-REI (STM-64) REI-L (OC-192)	-

Tabelle TD-26 LED-Anzeigen der zusätzlichen Anomalien

Die Auswertung und Anzeige von B2-Fehlern (STM-64/OC-192) bezieht sich auf alle Meßkanäle gemeinsam.

2.4.3 Auswertung des Section Overhead (SOH) #1 bis #64, Transport Overhead (TOH) #1 bis #192

Anzeige

• des SOH #1, TOH #1: hexadezimal

mit Ausnahme von: B1, B2, H1 bis H3

• des Trace Identifier J0 (STM-64/OC-192): ASCII, Klartext

Auswertung

Bitfehlermessung

• mit Quasi-Zufallsfolge PRBS11: E1, F1, E2 (Einzel-Byte)

D1 bis D3, D4 bis D12 (Byte-Gruppe)

Ausgabe

Die Ausgabe der Overhead-Kanäle erfolgt über die

• DCC/ECC-Schnittstelle Bu [21] (V.11): E1, F1, E2 (Einzel-Byte)

• DCC/ECC-Schnittstelle Bu [21] (V.11): D1 bis D3, D4 bis D12, K1 bis K2

(Byte-Gruppe)

3 Optischer Leistungsteiler BN 3035/90.49

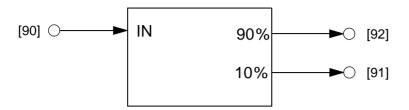


Bild TD-15 Optischer Leistungsteiler (Optical Power Splitter)

3.1 Wellenlängenbereiche

"1310 nm"	1260 bis 1360 nm
"1550 nm"	1500 bis 1600 nm

3.2 Dämpfung

5

ANT-20SE Advanced Network Tester

O.172 Jitter/Wander bis 155 Mbit/s

BN 3060/91.30

O.172 Jitter/Wander bis 622 Mbit/s

BN 3060/91.31

O.172 Jitter/Wander für 2488-Mbit/s-Schnittstellen

BN 3060/91.32

Softwareversion 7.20

Technische Daten

Inhalt

Technische Daten O.172 Jitter/Wander bis 622 Mbit/s

1	Jitterg	enerator	TD-2
	1.1	Bitraten	TD-2
	1.2	Interne Modulationsquelle	TD-2
	1.3	Eingang für externe Modulationsspannung [30]	TD-3
	1.4	Fehlergrenzen	TD-4
	1.4.1	Amplitudenfehler ***	TD-4
	1.4.2	Intrinsic Jitter	TD-5
	1.4.3	Modulationsfrequenz	TD-5
2	Jittera	nalysator	TD-6
	2.1	Bitraten	TD-6
	2.2	Jittermeßbereich	TD-6
	2.3	Bewertungsfilter nach ITU-T O.172	TD-8
	2.4	Demodulatorausgang [31]	TD-9
	2.5	Meßwertanzeige	TD-9
	2.6	Fehlergrenzen des angezeigten Jitters	TD-10
	2.6.1	Meßgenauigkeit	TD-11
	2.6.2	Frequenzgangfehler***	TD-12
	2.7	Übersteuerungsfestigkeit bei Pointerjitter	TD-14
	2.8	RMS-Jitter	TD-15
3	Messu	ıng der Jitterverträglichkeit	TD-16
	3.1	Fast Maximum Tolerable Jitter (F-MTJ)	TD-16
	3.2	Maximum Tolerable Jitter (MTJ)	TD-17
4	Messu	ıng der Jitterübertragungsfunktion	TD-19
	4.1	Jitter Transfer Function (JTF)	TD-19
	4.2	Meßfehler (typisch)	TD-21
E	Phasal	hito	TD 2/

i

O	wande	r-Erzeugung	ID-26
	6.1	Bitraten	TD-26
	6.2	Wanderamplitude und Wanderfrequenz	TD-26
	6.3	Fehlergrenzen	TD-27
	6.3.1	Amplitudenfehler	TD-27
	6.3.2	Intrinsic Jitter/Wander	TD-27
	6.3.3	Modulationsfrequenz	TD-27
	6.4	Synchronisation	TD-27
7	Wande	r-Messung	TD-28
	7.1	Bitraten	TD-28
	7.2	Referenzeingang [34]/[35]	TD-28
	7.3	Meßbereich	TD-29
	7.4	Meßwertanzeige	TD-30
	7.5	Genauigkeit***	TD-30
	7.6	Speicherplatzbedarf	TD-31
8	Messur	ng der Wanderverträglichkeit	TD-32
	8.1	Maximum Tolerable Wander (MTW)	TD-32
Te		e Daten O.172 Jitter/Wander Mbit/s-Schnittstelle)	
1	Jitterge	enerator	TD-36
	1.1	Bitrate	TD-36
	1.2	Interne Modulationsquelle	TD-36
	1.3	Eingang für externe Modulationsspannung [50]	TD-37
	1.4	Fehlergrenzen	TD-37
	1.4.1	Amplitudenfehler***	TD-37
	1.4.2	Intrinsic Jitter	TD-38
	1.4.3	Modulationsfrequenz	TD-38
2	Jitteran	nalysator	TD-39
	2.1	Bitrate	TD-39
	2.2	Jittermeßbereich	TD-39
	2.3	Bewertungsfilter nach ITU-T O.172	TD-40
	2.4	Demodulatorausgang [51]	
	2.5	Meßwertanzeige	TD-41

	2.6	Fehlergrenzen des angezeigten Jitters	TD-42
	2.6.1	Meßgenauigkeit	TD-42
	2.6.2	Frequenzgangfehler***	TD-43
	2.7	RMS-Jitter	TD-43
	2.8	Phasehits	TD-44
3	Messu	ng der Jitterverträglichkeit	TD-45
	3.1	Fast Maximum Tolerable Jitter (F-MTJ)	TD-45
	3.2	Maximum Tolerable Jitter (MTJ)	
4	Messu	ng der Jitterübertragungsfunktion	TD-47
	4.1	Jitter Transfer Function (JTF)	TD-47
	4.2	Meßfehler (typisch)	TD-48
5	Wande	er-Erzeugung	TD-50
	5.1	Bitrate	TD-50
	5.2	Wanderamplitude, Wanderfrequenz und Taktverstimmung	TD-50
	5.3	Fehlergrenzen	
	5.3.1	Amplitudenfehler	
	5.3.2	Intrinsic Jitter/Wander	
	5.3.3	Modulationsfrequenz	TD-51
	5.4	Synchronisation	
6	Wande	er-Messung	TD-52
	6.1	Referenztakt [54]	TD-52
	6.2	Meßbereich	TD-52
	6.3	Meßwertanzeige	TD-53
	6.4	Genauigkeit	TD-53
	6.5	Speicherplatzbedarf	TD-54
7	Messu	ng der Wanderverträglichkeit	TD-55
	7 1	Maximum Tolerable Wander (MTW)	TD-55

Notizen:

ANT-20SE

Technische Daten O.172 Jitter/Wander bis 622 Mbit/s

Diese technische Daten umfassen die Optionen:

•	3035/90.81	O.172 Jittergenerator
•	3035/90.82	O.172 Jitteranalysator
•	3035/90.83	Erweiterung O.172 Jittergenerator bis 622 Mbit/s
•	3035/90.84	Erweiterung O.172 Jitteranalysator bis 622 Mbit/s
•	3035/90.85	O.172 Wandergenerator
•	3035/90.86	O.172 Wanderanalysator

Die Zahlen in eckigen Klammern [...] entsprechen denen, die am Gerät aufgeführt sind. Kalibrierte Kenndaten sind mit *** markiert.

Normen

Die Jitter- und Wander-Erzeugung und -Messung erfolgt in Übereinstimmung mit folgenden Normen:

- ITU-T G.823, G.824, G.825, O.172
- Bellcore GR-253, GR-499
- ANSI T1.101, T1.102, T1.105.03

1 Jittergenerator

erfüllt bzw. übertrifft die Forderungen nach ITU-T O.172

1.1 Bitraten

entsprechend der Ausstattung des Grundgeräts

1.2 Interne Modulationsquelle

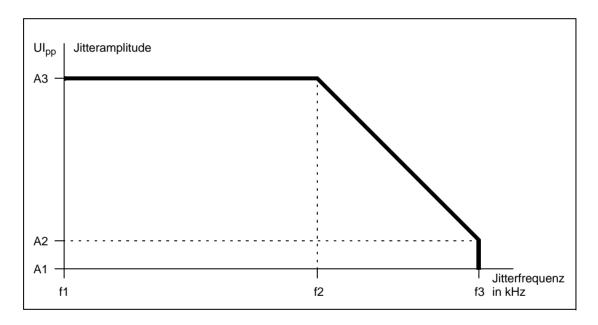


Bild TD-1 Jitteramplitude in Abhängigkeit von der Jitterfrequenz

Bitrate in kHz	A1 in Ulpp	A2 in Ulpp	A3 in Ulpp	f1 in Hz	f2 in kHz	f3 in kHz
1544	0,002	0,5	64	0,1	0,625	80
2048	0,002	0,5	64	0,1	1,56	200
6312	0,002	0,5	64	0,1	0,94	120
8448	0,002	0,5	64	0,1	6,25	800
34368	0,002	0,5	64	0,1	27	3500
44736	0,002	0,5	64	0,1	35	4500
51840	0,002	0,5	64	0,1	27	3500
139264	0,002	0,5	64	0,1	39	5000
155520	0,002	0,5	64	0,1	39	5000
622080	0,008	1,0	256	0,1	20	5000

Tabelle TD-1 Jitteramplitude und Jitterfrequenz bei verschiedenen Systembitraten

1.3 Eingang für externe Modulationsspannung [30]

Buchse	BNC
Eingangsimpedanz	75 Ω
Frequenzbereich	0 Hz bis 5 MHz
Nenneingangsspannungsbereich	0 bis 2,0 V _{pp} (8,2 dBm) einstellbar
Maximal zulässiger Eingangspegel	4,0 V _{pp} (14,2 dBm)

Das Überschreiten der Modulationsspannung von 2,0 V_{pp} wird angezeigt durch:

Warning: External [30] Modulation Exceeded!

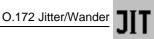
Hinweis: Um größtmögliche Genauigkeit zu erzielen, wird empfohlen, eine möglichst hohe Eingangsspannung (max. 2,0 V_{pp}) anzulegen und die Amplitude auf den gewünschten Wert einzustellen.

Bei sehr niedrigen Eingangsspannungen und sehr großen eingestellten Amplituden muß mit verringerter Genauigkeit bzw. erhöhtem Eigenjitter gerechnet werden.

1.4 Fehlergrenzen

Die Fehlergrenzen erfüllen bzw. übertreffen die Anforderungen nach ITU-T O.172.

1.4.1 Amplitudenfehler ***


Der Amplitudenfehler beschreibt die Abweichung von der eingestellten Amplitude bei sinusförmiger Modulation.

Der Wert Q (Variable Error) ergibt sich aus folgender Tabelle:

Bitrate in k/bits	Q (Variable Error) in %	Frequenzbereich in kHz		
1544	8	0,002 bis 40		
2048	8	0,01 bis 100		
6312	8	0,002 bis 60		
8448	8	0,02 bis 400		
34368	8	0,1 bis 500		
	12	500 bis 800		
44736	8	0,002 bis 400		
51840	8	0,3 bis 400		
139264	8	0,1 bis 500		
	12	500 bis 2000		
	15	2000 bis 3500		
155520	8	0,5 bis 500		
	12	500 bis 1300		
622080	8	1 bis 500		
	12	500 bis 2000		
	15	2000 bis 5000		
Unterhalb des jeweils angegebenen Frequenzbereichs gilt: $Q = 12\%$, oberhalb gilt: $Q = 15\%$				

Tabelle TD-2 Wert Q bei verschiedenen Bitraten und Modulationsfrequenzen

ANT-20SE

1.4.2 Intrinsic Jitter

Der Intrinsic Jitter gibt den maximalen Ausgangsjitter des ANT-20SE bei einer eingestellten Amplitude von 0 UI an. Dabei wird eine Bandbreite zwischen den Filtern HP1 und LP (siehe Tab. TD-7, Seite TD-8) zugrunde gelegt.

Bitrate in kbit/s	Intrinsic Jitter in UI
bis 155520	0,005
622080	0,04

Tabelle TD-3 Intrinsic Jitter

1.4.3 Modulationsfrequenz

Genauigkeit der Modulationsfrequenz	Jenaui	igkeit der M	lodulationsfrequ	enz			±0,1	%
-------------------------------------	--------	--------------	------------------	-----	--	--	------	---

2 Jitteranalysator

erfüllt bzw. übertrifft die Anforderungen nach ITU-T O.172

2.1 Bitraten

Tip: Es wird empfohlen, Jitter- und Wandermessungen mit Kabeln durchzuführen, die nicht länger als 10 m sind. Längere Kabel können durch frequenzabhängiges Dämpfungsverhalten Musterjitter verursachen und somit die Meßgenauigkeit beinträchtigen.

2.2 Jittermeßbereich

Bereich 1 bis 155 Mbit/s bei 622 Mbit/s		s 1,6 UI _{pp}
Bereich 2	0 b	
Bereich 3 bis 155 Mbit/s bei 622 Mbit/s		s 200 UI _{pp} s 800 UI _{pp}

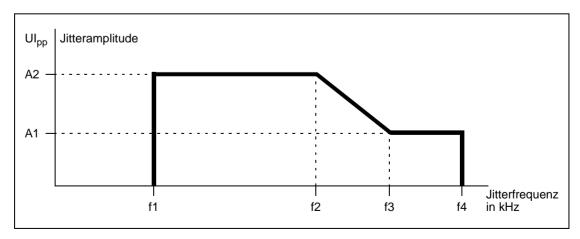


Bild TD-2 Jittermeßbereich

Jittermeßbereich 1,6 UI bzw. 6,4 UI

Bitrate in kbit/s	A2 (UI)	A1 (UI)	f1 (Hz)	f2 (Hz)	f3 (Hz)	f4 (Hz)
1544	1,6	0,5	0,1	12,5 k	40 k	-
2048	1,6	0,5	0,1	31,25 k	100 k	-
6312	1,6	1	0,1	37,5 k	60 k	-
8448	1,6	0,5	0,1	62,5 k	200 k	400 k
34368	1,6	0,5	0,1	62,5 k	200 k	800 k
44736	1,6	0,5	0,1	62,5 k	200 k	400 k
51840	1,6	0,25	0,1	62,5 k	400 k	-
139264	1,6	0,5	0,1	62,5 k	200 k	3500 k
155520	1,6	0,2	0,1	62,5 k	500 k	1300 k
622080	6,4	0,2	0,1	62,5 k	2000 k	5000 k

Tabelle TD-4 Jittermeßbereich 1,6 UI bzw. 6,4 UI in Abhängigkeit von der Bitrate

Jittermeßbereich 20 UI bzw. 80 UI

Bitrate in kbit/s	A2 (UI)	A1 (UI)	f1 (Hz)	f2 (Hz)	f3 (Hz)	f4 (Hz)
1544	20	0,5	0,1	1 k	40 k	-
2048	20	0,5	0,1	2,5 k	100 k	-
6312	20	1	0,1	3 k	60 k	-
8448	20	0,5	0,1	5 k	200 k	400 k
34368	20	0,5	0,1	5 k	200 k	800 k
44736	20	0,5	0,1	5 k	200 k	400 k
51840	20	0,25	0,1	5 k	400 k	-
139264	20	0,5	0,1	5 k	200 k	3500 k
155520	20	0,2	0,1	5 k	500 k	1300 k
622080	80	0,2	0,1	5 k	2000 k	5000 k

Tabelle TD-5 Jittermeßbereich 20 UI bzw. 80 UI in Abhängigkeit von der Bitrate

Jittermeßbereich 200 UI bzw. 800 UI

Bitrate in kbit/s	A2 (UI)	A1 (UI)	f1 (Hz)	f2 (Hz)	f3 (Hz)	f4 (Hz)
bis 155520	200	20	0,1	100	1 k	-
622080	800	80	0,1	100	1 k	-

Tabelle TD-6 Jittermeßbereich 200 UI bzw. 800 UI in Abhängigkeit von der Bitrate

Hinweis: Für elektrische Signale gelten die angegebenen Meßbereiche bei Nominalcode (CMI, HDB-3, B3ZS, B8ZS) oder Takt.

2.3 Bewertungsfilter nach ITU-T 0.172

Abhängig von der eingestellten Bitrate sind folgende Filtereinstellungen möglich:

Filtereigenschaften

-3-dB-Grenzfrequenz-Toleranz	f _G ± 10%
Zweiter Filterpol bei Hochpässen	≤0,1 Hz
Maximale Dämpfung	indestens 60 dB

Vorzugseinstellung der Filter nach ITU-T:

Bitrate in kbit/s	HP1 + LP		HP2 + LP		
III KDIUS	Hochpaß in kHz	Tiefpaß in kHz	Hochpaß in kHz	Tiefpaß in kHz	
1544	0,01	40	8	40	
2048	0,02	100	18	100	
6312	0,01	60	3	60	
8448	0,02	400	3	400	
34368	0,1	800	10	800	
44736	0,01	400	30	400	
51840	0,1	400	20	400	
139264	0,2	3500	10	3500	
155520	0,5	1300	65	1300	
622080	1	5000	250	5000	

Tabelle TD-7 Filtereinstellungen nach ITU-T

Hinweis: Wenn als Hochpaßfilter 0,1 Hz, 2 Hz oder 4 Hz eingestellt sind, können nach dem Einschalten des kalten Geräts bis zu drei Minuten vergehen, bevor der Jitteranalysator gültige Meßergebnisse liefert. Dies gilt nicht beim Wiedereinschalten des betriebswarmen Gerätes.

¹ In den Meßbereichen 200 UI bzw. 800 UI sind nur Hochpaßfilter im Bereich von 0,1 bis 10 Hz einstellbar.

² Das 1-kHz-Tiefpaßfilter ist nur in den Meßbereichen 200 UI bzw. 800 UI vorhanden (Für diesen Meßbereich ist kein anderes Tiefpaßfilter vorhanden). Filtercharakteristik: 4. Ordnung.

ANT-20SE O.172 Jitter/Wander

2.4 Demodulatorausgang [31]

Buchse	 BNC
Innenwiderstand	

Ausgangsspannung (mit 75 Ω Abschluß):

Bitrate (in kbit/s)	Bereich					
(III KDIUS)	1,6 UI bzw. 6,4 UI	20 UI bzw. 80 UI	200 UI bzw. 800 UI			
bis 155520	1 V/UI	0,1 V/UI	0,01 V/UI			
622080	0,25 V/UI	0,025 V/UI	0,0025 V/UI			

Tabelle TD-8 Ausgangsspannungen am Ausgang [31]

2.5 Meßwertanzeige

Gemessen wird die positive und negative Jitteramplitude.

Current Values (momentaner Meßwert)

Der momentane Meßwert wird dauernd angezeigt oder grafisch dargestellt.

Jitter peak-peak Jitter-Spitze-Spitze-Wert
Jitter +peak positiver Jitterspitzenwert
Jitter -peak
Anzeigemittelung für Current Values (auswählbar) off, 1, 2, 3, 4, 5 Sekunden
Auflösung der Anzeige (momentaner Meßwert) im Bereich 1
Anzeigebereich 1 (grafische Darstellung) Jitter peak-peak
Anzeigebereich 2 (grafische Darstellung) Jitter peak-peak
Anzeigebereich 3 (grafische Darstellung) Jitter peak-peak

Max. Values (maximaler Meßwert)

Der maximale Meßwert wird nur angezeigt, wenn im "Application Manager" eine Messung ge-

2.6 Fehlergrenzen des angezeigten Jitters

Die Fehlergrenzen des angezeigten Jitters erfüllen bzw. übertreffen die Anforderungen nach ITU-T-Empfehlung O.172.

Die angegebenen Fehlergrenzen gelten unter folgenden Bedinungen:

Elektrische Signale: Nenneingangspegel nach ITU-T G.703 ohne Leitungsverzerrung

Nominalcode (CMI, HDB-3, B3ZS, B8ZS) oder Takt

Optische Signale: Optischer Pegel im Bereich -10 dBm bis -12 dBm

(scrambled NRZ)

- Strukturierte Signale (Quasizufallsfolge oder gerahmte Signale) oder Takt
- Sinusförmige Modulation
- Standardfilter HP1 + LP bzw. HP2 + LP gemäß Kap. 2.3, Seite TD-8, Tabelle TD-5

Der Gesamtmeßfehler setzt sich aus folgenden Einzelfehlern zusammen (additiv):

- Meßfehler bei der Bezugsfrequenz (siehe Kap. 2.6.1, Seite TD-11)
- Frequenzgangfehler (siehe Kap. 2.6.2, Seite TD-12)
- Abweichung des Filterfrequenzgangs vom nominalen Verlauf (siehe Kap. 2.3, Seite TD-8)

2.6.1 Meßgenauigkeit

Der angegebene Meßfehler gilt unter folgenden Bedingungen:

- Bezugsfrequenz: 100 kHz (SDH) bzw. 1 kHz (PDH)
- Der angegebene Meßfehler gilt im kleinen Meßbereich uneingeschränkt, im mittleren Meßbereich für Werte >0,8 UI (bzw. >3,2 UI bei 622 Mbit/s) und im großen Meßbereich für Werte >10 UI (bzw. 40 UI bei 622 Mbit/s)

Maximaler Meßfehler*** (ohne Frequenzgangfehler).....±5% des Meßwerts ± W

Der Wert W (Fixed Error) ergibt sich aus folgenden Tabellen:

Bitrate in kbit/s	Strukturierte Signa	Strukturierte Signale oder Quasizufallsfolge (PRBS)					
III KDIUS	Filter HP1 + LP	Filter HP1 + LP Filter HP2 + LP		HP 0,1 Hz + LP			
	W in UI	W in UI	W in UI	W in UI			
1544	0,03	0,02 ¹	0,05	0,07 ²			
2048	0,03	0,02 ¹	0,05	0,07 ²			
6312	0,03	0,02 ¹	0,05	0,07 ²			
8448	0,03	0,02 ¹	0,05	0,07 ²			
34368	0,035	0,025 ¹	0,07	0,12			
44736	0,035	0,025 ¹	0,07	0,12			
51840	0,035	0,025	0,07	0,12			
139264	0,035	0,025 ¹	0,07	0,22			
155520	0,05	0,025 ¹	0,07	0,22			
622080	0,07	0,05 ¹	0,1	0,52			

¹ Nachgewiesen ohne Modulation

Tabelle TD-9 Wert W (Fixed Error) für strukturierte Signale oder Quasizufallsfolgen

			Taktsignale				
Filter HP1 + LP	Filter HP2 + LP	HP 2 Hz + LP	HP 0,1 Hz + LP				
V in UI	W in UI	W in UI	W in UI				
),015	0,01 ¹	0,05	0,072				
),015	0,01 ¹	0,05	0,072				
),015	0,01 ¹	0,05	0,072				
),015	0,01 ¹	0,05	0,072				
^),),	/ in UI ,015 ,015 ,015	V in UI W in UI ,015 0,01 ¹ ,015 0,01 ¹ ,015 0,01 ¹ ,015 0,01 ¹	V in UI W in UI W in UI ,015 0,011 0,05 ,015 0,011 0,05 ,015 0,011 0,05 ,015 0,011 0,05 ,015 0,011 0,05				

¹ Nachgewiesen ohne Modulation

Tabelle TD-10 Wert W (Fixed Error) für Taktsignale

² Nach ≥30 min Aufwärmzeit des Geräts, nachweisbar nur mit Signalquellen hoher Taktstabilität

² Nach ≥30 min Aufwärmzeit des Geräts, nachweisbar nur mit Signalquellen hoher Taktstabilität

³ Keine Meßmöglichkeit von Taktsignalen an den optischen Schnittstellen

Bitrate in kbit/s	Taktsignale				
III KDIU3	Filter HP1 + LP	Filter HP2 + LP	HP 2 Hz + LP	HP 0,1 Hz + LP	
	W in UI	W in UI	W in UI	W in UI	
34368	0,025	0,021	0,07	0,12	
44736	0,025	0,021	0,07	0,12	
51840 ³	0,025	0,02	0,07	0,12	
139264	0,025	0,021	0,07	0,22	
155520 ³	0,025	0,021	0,07	0,22	

¹ Nachgewiesen ohne Modulation

Tabelle TD-10 Wert W (Fixed Error) für Taktsignale (Fortsetzung)

Zusätzlicher Fehler bei	
gedämpften elektrischen Signalen	. typisch ≤0,03 UI
leitungsverzerrten elektrischen Signalen	. typisch ≤0,05 UI
optischen Signalen mit Pegel >-10 dBm bzw. <-12 dBm	. typisch ≤0,05 UI

2.6.2 Frequenzgangfehler***

Bei Frequenzen, die nicht gleich der Bezugsfrequenz sind, können zusätzlich zum angegebenen Meßfehler folgende Frequenzgangfehler auftreten:

Frequenzgangfehler für SDH-/SONET-Signale..... entsprechend ITU-T O.172, Tabelle 10

Zusätzlicher Fehler	Frequenzbereich ¹ in kHz
±2%	0,1bis 400
±2%	0,5 bis 300
±3%	300 bis 1000
±5%	1000 bis 1300
±2%	1 bis 300
±3%	300 bis 1000
±5%	1000 bis 3000
±10%	3000 bis 5000
	±2% ±2% ±3% ±5% ±2% ±3% ±5%

¹ Unterhalb des angegebenen Frequenzbereichs wird der dort gültige Fehler fortgeschrieben

Tabelle TD-11 Frequenzgangfehler für SDH-/SONET-Signale

² Nach ≥30 min Aufwärmzeit des Geräts, nachweisbar nur mit Signalquellen hoher Taktstabilität

³ Keine Meßmöglichkeit von Taktsignalen an den optischen Schnittstellen

Frequenzgangfehler für PDH-/Tributary-Signale	. entsprechend ITU-T O.171, Tabelle 6
Bezugsfreguenz	1 kHz

Bitrate in kbit/s	Zusätzlicher Fehler	Frequenzbereich ¹ in kHz		
1544	±4%	0,01 bis 1		
	±2%	1 bis 40		
2048	±2%	0,02 bis 100		
6312	±4%	0,01 bis 1		
	±2%	1 bis 60		
8448	±2%	0,02 bis 300		
	±3%	300 bis 400		
34368	±2%	0,1 bis 300		
	±3%	300 bis 800		
44736	±4%	0,01 bis 0,2		
	±2%	0,2 bis 300		
	±3%	300 bis 400		
139264	±2%	0,2 bis 300		
	±3%	300 bis 1000		
	±5%	1000 bis 3000		
	±10%	3000 bis 3500		
Unterhalb des angegebenen Frequenzbereichs wird der dort jeweils gültige				

Tabelle TD-12 Frequenzgangfehler für PDH-/Tributary-Signale

Fehler fortgeschrieben

2.7 Übersteuerungsfestigkeit bei Pointerjitter

Die folgende Tabelle zeigt Kombinationen von Jitteramplituden und -frequenzen, die bei dem jeweils angebenenen Hochpaßfilter (und darüber) ohne Übersteuerung im 1,6-UI-Bereich gemessen werden können. Es wird dabei eine sinusförmige Jitter-Modulation gemäß ITU-T O.172, Abschnitt 9.2.4, Tabelle 6 vorausgesetzt (stellvertretend für Worst-Case-Pointerjitter).

Bitrate in kbit/s	HP-Filter (Hz)	Amplitude in UI	Frequenz in Hz
1544	≥10	20	0,5
2048	≥20	40	0,5
6312	≥10	20	0,5
8448	≥20	40	0,5
34368	≥100	25	5
44736	≥10	20	0,5
139264	≥200	80	1,5

Tabelle TD-13 Übersteuerungsfestigkeit bei Pointerjitter

2.8 RMS-Jitter

Wertebereich und Auflösung bis 155 Mbit/s

	1,6-UI-Bereich (Peak - Peak)		200-UI-Bereich (Peak - Peak)	
RMS-Wertebereich	0 bis 0,8 UI	0 bis 10 UI	0 bis 100 UI	
Auflösung	0,001 UI	0,01 UI	0,1 UI	

Tabelle TD-14 Wertebereich und Auflösung bis 155 Mbit/s

Wertebereich und Auflösung bei 622 Mbit/s

	6,4-UI-Bereich (Peak - Peak)	80-UI-Bereich (Peak - Peak)	800-UI-Bereich (Peak - Peak)
RMS-Wertebereich	0 bis 3,2 UI	0 bis 40 UI	0 bis 400 UI
Auflösung	0,001 UI	0,01 UI	0,1 UI

Tabelle TD-15 Wertebereich und Auflösung bei 622 Mbit/s

Meßgenauigkeit

Gültig für alle Bitraten bei Anwendung des 12-kHz-RMS-Filters und Nominalsignalen.

1,6-UI- bzw. 6,4-UI-Bereich	•
Integrationszeit	0, 40, 80 Sekunden (einstellbar)
Voreinstellung	1 Sekunde

3 Messung der Jitterverträglichkeit

3.1 Fast Maximum Tolerable Jitter (F-MTJ)

nur mit Option BN 3035/90.81 möglich

Nach Start der Messung werden einstellbare Kombinationen von Jitteramplituden und Jitterfrequenzen eingestellt. Der Meßpunkt wird anschließend mit "OK" (keine Alarme und Bitfehler) oder "Failed" (Alarme oder Bitfehler) gekennzeichnet.

Fehlerquelle wählbar	
SDH	
	Code, B1, B2, B3, MS-REI, MS-RDI,
	HP-REI, HP-RDI, LP-REI, LP-RDI
SONET	TSE (Test Sequence Error, Bitfehler),
	Code, B1, B2, B3, REI-L, REI-P, REI-V,
	RDI-L, RDI-P, RDI-V
Fehlerschwelle	0 bis 999999
Ma Quanti na mana (Fabrata ait)	0.4 his 000 s
Meßverzögerung (Erholzeit)	
Einstellbare Jitterfrequenzen (Scanfrequenzen) und	
Jitteramplituden	siehe Tab.TD-1, SeiteTD-3
·	
Anzeige	

Voreinstellungen

Bitrate in kbit/s	f1 / A1 in kHz/UI	f2 / A2 in kHz/UI	f3 / A3 in kHz/UI	f4 / A4 in kHz/UI	f5 / A5 in kHz/UI	f6 / A6 in kHz/UI
1544	0,01/5	0,1/5	0,5/5	2/0,7	8/0,1	40/0,1
2048	-	0,002/15	0,02/1,5	2,4/1,5	18/0,2	100/0,2
6312	0,01/5	0,1/5	0,9/5	2/0,61	4/0,1	20/0,1
8448	-	0,002/15	0,02/1,5	0,4/1,5	3/0,2	400/0,2
34368	-	0,01/15	0,1/1,5	1/1,5	10/0,15	800/0,15
44736	0,01/5	0,1/5	2,3/5	15/0,52	60/0,1	300/0,1
51840	0,01/15	0,03/15	0,3/1,5	2/1,5	20/0,15	400/0,15
139264	-	0,02/15	0,2/1,5	0,5/1,5	10/0,075	3500/0,075
155520	-	0,05/15	0,5/1,5	6,5/1,5	65/0,15	1300/0,15
622080	-	0,1/15	1/1,5	25/1,5	250/0,15	5000/0,15

Tabelle TD-16 Einstellwerte der Jitterfrequenz und der Jitteramplitude bei der Fast-MTJ-Messung

Die Voreinstellungen in der Tabelle stellen die Eckpunkte der in den ITU-T-Empfehlungen G.823 und G.825 bzw. Bellcore GR-499 angegebenen Grenzkurven dar.

3.2 Maximum Tolerable Jitter (MTJ)

nur mit Option BN 3035/90.81 möglich

Nach Start der Messung wird die Jitteramplitude des Digitalsignals so lange geändert, bis der Bitfehlermesser die Überschreitung einer vorgegebenen Schwelle erkennt. Es wird derjenige Meßpunkt als Jitterverträglichkeitswert ausgegeben, der um ein Suchinkrement niedriger liegt.

Voreingestellte Scan-Frequenzen

Bitrate in kbit/s	f1 in kHz	f2 in kHz	f3 in kHz	f4 in kHz	f5 in kHz	f6 in kHz	f7 in kHz	f8 in kHz	f9 in kHz
1544	0,002	0,01	0,04	0,1	0,4	1	4	10	40
2048	0,002	0,02	0,2	0,8	2,4	8	18	50	100
6312	0,002	0,01	0,04	0,1	0,4	1	4	20	60
8448	0,002	0,02	0,4	1	3	10	40	100	400
34368	0,002	0,1	1	4	10	40	100	300	800
44736	0,002	0,01	0,1	0,6	3	10	30	100	400
51840	0,002	0,01	0,03	0,3	2	8	20	100	400
139264	0,002	0,1	1	10	40	100	400	1000	3500
155520	0,002	0,1	1	6,5	20	65	200	600	1300
622080	0,002	0,1	1	10	100	400	1000	2000	5000

Tabelle TD-17 Voreingestellte Scan-Frequenzen

Voreingestellte Toleranzmasken

Bitrate in kbit/s	f1 / A1 in kHz/UI	f2/A2 in kHz/UI	f3 / A3 in kHz/UI	f4 / A4 in kHz/UI	f5 / A5 in kHz/UI	f6 / A6 in kHz/UI
1544	-	-	0,01/5	0,5/5	8/0,1	40/0,1
2048	-	0,002/15	0,02/1,5	2,4 /1,5	18/0,2	100/0,2
6312	-	-	0,01/5	0,9/5	4/0,1	20/0,1
8448	-	0,002/15	0,02/1,5	0,4/1,5	3/0,2	400/0,2
34368	-	0,003/50	0,1/1,5	1/1,5	10/0,15	800/0,15
44736	-	-	0,01/5	2,3/5	60/0,1	300/0,1
51840	0,01/15	0,03/15	0,3/1,5	2/1,5	20/0,15	400/0,15
139264	-	0,005/60	0,2/1,5	0,5/1,5	10/0,075	3500/0,075
155520	-	0,0193/39	0,5/1,5	6,5/1,5	65/0,15	1300/0,15
622080	-	0,0096/156	1/1,5	25/1,5	250/0,15	5000/0,15

Tabelle TD-18 Voreingestellte Toleranzmasken

ANT-20SE O.172 Jitter/Wander

4 Messung der Jitterübertragungsfunktion

4.1 Jitter Transfer Function (JTF)

nur mit Option BN 3035/90.81 und BN 3035/90.82 möglich

Nach dem Start einer Messung wird nacheinander bei den vorgewählten Jitterfrequenzen eine vom Benutzer wählbare Amplitude eingestellt. Der Jitteranalysator ermittelt dazu den vom Prüfling übertragenen Jitter. Der Jitter wird selektiv gemessen, d.h. mit einem auf die Modulationsfrequenz abgestimmten Bandpaßfilter. Damit wird sichergestellt, daß Störfrequenzen, die außerhalb der Bandbreite des Bandpaßfilters liegen, das Meßergebnis nicht beeinträchtigen.

Aus dem logarithmischen Verhältnis von Ausgangs- zu Eingangsjitter wird punktweise die Jitterübertragungsfunktion berechnet:

Jitterübertragungsfunktion $H(f_j) = 20 lg \frac{Ausgangsjitter}{Eingangsjitter}$

Durch eine Kalibrierungsmessung, die entweder vor jeder Messung durchgeführt wird (empfohlen) oder die abgespeichert werden kann, wird eine größtmögliche Meßgenauigkeit erreicht. Dazu wird während einer Schleifenmessung (Verbindung TX - RX) der Eigenfehler des Analysators bei jeder gewählten Scanfrequenz ermittelt. Bei der anschließenden Messung des Prüflings werden die Ergebnisse um den Eigenfehler korrigiert.

Einstellbarer Sendejitter	siehe Kap. 1, Seite TD-2, TD-3
Meßbereich	bzw. 6,4 UI _{pp} oder 20 UI _{pp} (umschaltbar) bzw. 6,4 UI _{pp} oder 80 UI _{pp} bei 622 Mbit/s
Meßverzögerung (Erholzeit)	0,1 bis 999 s
Filterbandbreite (-3 dB)	10 Hz

Die Jitterfrequenzen (Scan-Frequenzen) können vom Benutzer in Form von bis zu 20 frei programmierbaren Frequenzen im Bereich von 10 Hz bis 5 MHz definiert werden (abhängig von der Bitrate).

Anzeige Wertetabelle oder frequenzlogarithmische Grafik

Zusätzlich ist die Einblendung von Toleranzmasken möglich.

Voreingestellte Scan-Frequenzen und Amplituden

Bitrate in kbit/s	f1/Ampl. (kHz/UI)	f2/Ampl. (kHz/UI)	f3/Ampl. (kHz/UI)	f4/Ampl. (kHz/UI)	f5/Ampl. (kHz/UI)	f6/Ampl. (kHz/UI)	f7/Ampl. (kHz/UI)	f8/Ampl. (kHz/UI)	relevante Normen
1544	0,01/1	0,035/1	0,1/1	0,35/1	1/1	2,5/0,51	15/0,1	-	Bellcore GR-499
2048	0,01/1	0,1/1	1/1	10/0,36	36/0,2	100/0,2	-	-	ITU-T G.823
6312	0,01/1	0,035/1	0,1/1	0,5/1	1/1	2,5/0,34	15/0,1	-	Bellcore GR-499
8448	0,01/1	0,1/1	0,4/1	1/0,6	10/0,2	100/0,2	400/0,2	-	ITU-T G.823
34368	0,01/1	0,1/1	0,3/1	1/1	3/0,5	10/0,15	100/0,15	800/0,15	ITU-T G.823
44736	0,01/1	0,1/1	1/1	4/1	15/0,52	-	-	-	Bellcore GR-499
51840	0,01/1	0,1/1	1/1	10/0,3	40/0,15	100/0,15	400/0,15	-	Bellcore GR-253
139264	0,01/1	0,1/1	0,5/1	1/0,75	5/0,15	-	-	-	ITU-T G.823
155520	0,1/1	1/1	10/0,975	130/0,15	500/0,15	1300/0,15	-	-	ITU-T G.825 Bellcore GR-253
622080	0,1/1	1/1	10/1	100/0,375	500/0,15	1000/0,15	5000/0,15	-	ITU-T G.825, Bellcore GR-253

Tabelle TD-19 Voreingestellte Scan-Frequenzen

Die voreingestellten Scan-Frequenzen und -Amplituden liegen auf bzw. unterhalb der in den jeweiligen Normen angegebenen Grenzkurven der Jitterverträglichkeit. Dadurch wird gewährleistet, daß die JTF-Messung nicht mit unzulässig hohem Jitter durchgeführt wird.

Voreingestellte Toleranzmasken

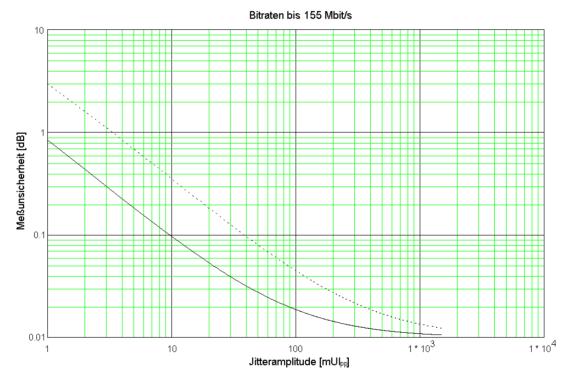
Bitrate in kbit/s	f1/max. dB in kHz/in dB	f2/max. dB in kHz/in dB	f3/max. dB in kHz/in dB	f4/max. dB in kHz/in dB	relevante Normen
1544	0,01/0,1	0,35/0,1	2,5/-34	15/-49,5	Bellcore GR-499
2048	0,01/0,5	36/0,5	100/-8,4	-	ITU-T G.735, G.736, G.737, G.738, G.739
6312	0,01/0,1	0,5/0,1	2,5/-28	15/-43,5	Bellcore GR-499
8448	0,01/0,5	0,1/0,5	1/-19,5	400/-19,5	ITU-T G.751
34368	0,01/0,5	0,3/0,5	3/-19,5	800/-19,5	ITU-T G.751
44736	0,01/0,1	1/0,1	15/-23,4	-	Bellcore GR-499
51840	0,01/0,1	40/0,1	400/-19,9	-	ANSI T1.105.03, Bellcore GR-253
139264	0,01/0,5	0,5/0,5	5/-19,5	-	-
155520	0,01/0,1	130/0,1	1300/-19,9	-	ITU-T G.958, ANSI T1.105.03, Bellcore GR-253
622080	0,01/0,1	500/0,1	5000/-19,9	-	ITU-T G.958, ANSI T1.105.03, Bellcore GR-253

Tabelle TD-20 Voreingestellte Toleranzmasken

Die voreingestellte untere Toleranzmaske (min. dB) ist in allen Fällen -99,9 dB und ist in der Grafik nicht sichtbar.

4.2 Meßfehler (typisch)

Der Gesamtfehler F_{Gesamt} setzt sich aus den Teilfehlern F1 + F2 + F3 zusammen.


F1 und F2 sind abhängig von der gesendeten Jitteramplitude (F1) und von der gemessenen Jitteramplitude (F2). Sie lassen sich aus den nachfolgenden Diagrammen ablesen.
F3 ist bis zu einem Maximalwert abhängig von der gemessenen Jitterdämpfung D (in dB) und einer bitratenabhängigen Konstante k.

Es gilt: $F3 = D \cdot k$

Hinweis: Der Wert F3 kann maximal so groß werden wie der Wert F3_{MAX}.

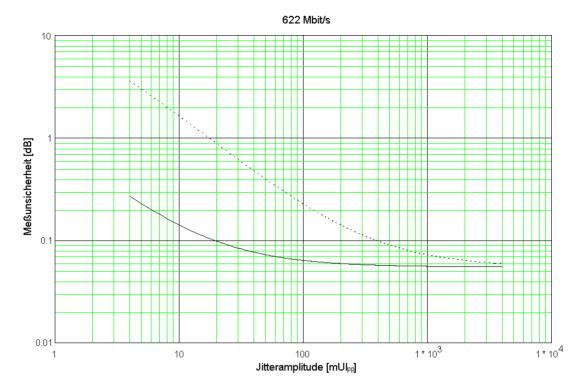

Bitrate	k	F3 _{MAX}
≤ 140 Mbit/s	0,035	0,5 dB
155 Mbit/s	0,05	1 dB
622 Mbit/s	0,1	3 dB

Tabelle TD-21 Faktor k und Maximalwert F3_{MAX} in Abhängigkeit von der Bitrate

- F1: Meßunsicherheit in Abhängigkeit von der Sendeamplitude
- ··· F2: Meßunsicherheit in Abhängigkeit von der gemessenen Jitteramplitude

Bild TD-3 Meßunsicherheit für Bitraten bis 155 Mbit/s

- F1: Meßunsicherheit in Abhängigkeit von der Sendeamplitude
- ··· F2: Meßunsicherheit in Abhängigkeit von der gemessenen Jitteramplitude

Bild TD-4 Meßunsicherheit bei 622 Mbit/s

Alle Angaben gelten unter folgenden Bedingungen:

• Nominalpegel und Standardleitungscode

Temperatur: 20 °C bis 26 °C

Integrationszeit: 5 sEinschwingzeit (Settling Time): 1 s

Warm-Up für das Gesamtgerät: 30 Minuten
 Zusätzlich muß bei den "optischen" Bitraten (155 Mbit/s und 622 Mbit/s) die jeweilige Bitrate für mindestens fünf Minuten eingeschaltet sein.

- Kalibrierung unmittelbar vor der Messung
- Jitteramplitude am Jittermesser und Meßbereich:

bis 155 Mbit/s: 1 mUI bis 1,5 UI Bereich 1,6 UI bei 622 Mbit/s: 4 mUI bis 4 UI Bereich 6,4 UI

Beispiel

Bei einer Bitrate von 34 Mbit/s und einer Sendeamplitude von 1000 mUI_{pp} wird eine Jitterübertragung von -21 dB gemessen.

Um den Gesamtfehler zu berechnen, werden die Fehler F1 und F2 aus Bild TD-3 abgelesen. Der Fehler F3 wird nach oben stehender Formel berechnet (k wird aus der Tabelle TD-21 entnommen).

F1 = 0,011 dB (aus Bild TD-3)

Aus der Jitterübertragungsfunktion

$$H(f_j) = 20 lg \frac{gemessener Jitter}{gesendeter Jitter} = 20 lg \frac{x}{1000 mUI} = -21 dB$$

errechnet sich ein gemessener Jitter von ca. 90 mUI.

Mit diesem Wert kann F2 aus Bild TD-3 abgelesen werden.

F2 = 0.05 dB (aus Bild TD-3)

$$F3 = 21 dB \cdot 0.035 = 0.735 dB$$

Der Wert für F3 ist größer als der Wert F3_{MAX} aus Tabelle TD-21 (0,5 dB). Daher wird der Wert F3_{MAX} = 0,5 dB für F3 verwendet.

5 Phasehits

Wenn das demodulierte Jittersignal eine einstellbare positive Schwelle überschreitet oder eine negative Schwelle unterschreitet, so wird dies als Ereignis gezählt. Die Ereignisse werden durch getrennte Zähler erfaßt. Der Zählerstand gibt die aktuelle Anzahl der Schwellenüber- und -unterschreitungen der Messung an.

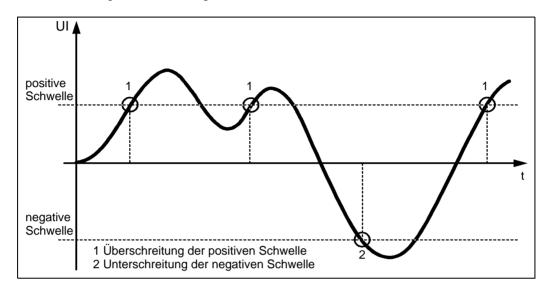


Tabelle TD-22 Beispiel: Demoduliertes Jittersignal (Jitter-Zeit-Funktion)

Anzeige

- Zählwert für die Überschreitung der positiven Schwelle
- Zählwert für die Unterschreitung der negativen Schwelle

Eingabe der Schwellen (positive und negative Schwellen)

Bitraten bis 155 Mbit/s	1,6-UI-Bereich	20-UI-Bereich	200-UI-Bereich
Wertebereich	0,1 UI bis 0,8 UI	0,1 UI bis 10 UI	1 bis 100 UI
Schrittweite	0,1 UI	0,1 UI	1 UI

Tabelle TD-23 Wertebereich und Schrittweite bis 155 Mbit/s

Bitrate 622 Mbit/s	6,4-UI-Bereich	80-UI-Bereich	800-UI-Bereich
Wertebereich	0,1 bis 3,2 UI	0,1 bis 40 UI	1 bis 400 UI
Schrittweite	0,1 UI	0,1 UI	1 UI

Tabelle TD-24 Wertebereich und Schrittweite bei 622 Mbit/s

ANT-20SE

Alarme		
Alarme	 	LOS (Loss of Signal),

LTI (Loss of Timing Information) und Netzausfall

Während eines Alarms werden die Zähler gestoppt. Die Zählung wird fortgesetzt, wenn der Alarm beendet ist und die Gate-Zeit noch nicht abgelaufen ist. Das Auftreten eines Alarms wird durch ein gelbes Warnzeichen vor dem Meßergebnis angezeigt. Das Warnzeichen wird gelöscht, wenn eine neue Messung gestartet wird.

6 Wander-Erzeugung

nur mit Option BN 3035/90.81 und BN 3035/90.85 möglich

6.1 Bitraten

6.2 Wanderamplitude und Wanderfrequenz

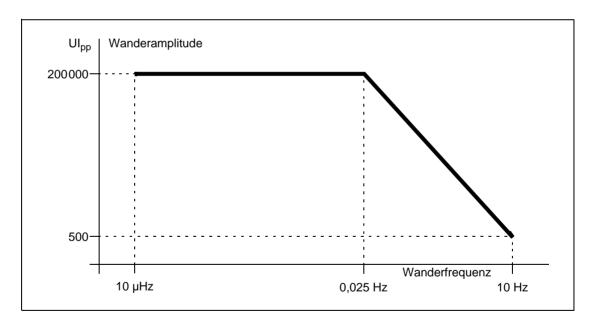


Bild TD-5 Maximale Wanderamplitude in Abhängigkeit von der Wanderfrequenz

ANT-20SE O.172 Jitter/Wander

6.3 Fehlergrenzen

6.3.1 Amplitudenfehler

Der Amplitudenfehler beschreibt die Abweichung von der eingestellten Amplitude bei sinusförmiger Modulation.

6.3.2 Intrinsic Jitter/Wander

Der Intrinsic Jitter/Wander gibt den maximalen Ausgangsjitter/-wander des ANT-20SE bei einer eingestellten Amplitude von 0 UI an. Dabei wird eine Bandbreite zwischen den Filtern HP1 und LP (siehe Tab. TD-7, Seite TD-8) zugrunde gelegt.

Bitrate in kbit/s	Intrinsic Jitter/Wander in UI
bis 155520	0,005
622080	0,04

Tabelle TD-25 Intrinsic Jitter/Wander

6.3.3 Modulationsfrequenz

6.4 Synchronisation

In der Betriebsart Wandergenerator wird der Sender des ANT-20SE üblicherweise extern synchronisiert. Dazu schließen Sie an Buchse [25] ein entsprechendes Referenzsignal an. Beachten Sie hierzu auch die "Technischen Daten" des Grundgeräts.

7 Wander-Messung

nur mit Option BN 3035/90.82 und BN 3035/90.86 möglich

7.1 Bitraten

entsprechend der Ausstattung des Grundgeräts

7.2 Referenzeingang [34]/[35]

Tip: Sie können eine Wander-Messung nur mit einem externen Referenzsignal durchführen! Für dieses sind die unten genannten Taktfrequenzen bzw. Bitraten und Eingangspegel zulässig.

Zulässige Verstimmung.....±100 ppm

Überwachung LTI (Loss of Timing Information)

Buchse [34]

Zulässiger Eingangspegel

Referenzfrequenzen

Buchse [35]

Eingangsimpedanz	unsymmetrisch (unbalanced) 75 Ω
Zulässiger Eingangspegel Takt Datensignal (HDB-3, B8ZS)	
Referenzfrequenzen Takt	

7.3 Meßbereich

Wander-Amplitudenbereich	±1 x 10 ⁶ s
Maximal zulässige Phasenänderungsgeschw	indigkeit
Abtastrate 1/s	1000 UI/s für alle Bitraten
Abtastrate ≥ 30/s	
	20000 UI/s für Bitraten ≥45 Mbit/s

Der Wanderfrequenzbereich wird nach oben hin durch ein Tiefpaßfilter erster Ordnung begrenzt. Das Tiefpaßfilter wird in Abhängigkeit von der gewählten Abtastrate automatisch umgeschaltet.

Abtastrate	Tiefpaßfilter/f _G
1/s	0,1 Hz
30/s	10 Hz
60/s	20 Hz
300/s	100 Hz

Tabelle TD-26 Tiefpaßfilter in Abhängigkeit von der Abtastrate

Tiefpaßfilter

Filtercharakteristik
Meßbandbreite
Abweichung -3-dB-Grenzfrequenz
Maximale Dämpfung mindestens 30 dB
Welligkeit im Durchlaßbereich 1 Hz bis 10 Hz (bezogen auf die Dämpfung bei 0,1 Hz)

7.4 Meßwertanzeige

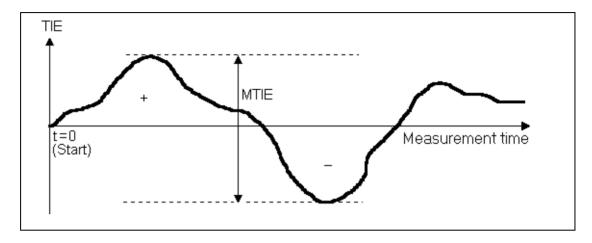


Bild TD-6 Beispiel: Wander-Messung über der Meßzeit

7.5 Genauigkeit***

Der angegebene Meßfehler gilt nach einer Anwärmzeit des ANT-20SE von mindestens 30 Minuten und unter einer maximalen Umgebungstemperaturänderung von 5 K.

Z₀ gemäß folgender Tabelle:

Z ₀ (τ)/ns	Beobachtungsintervall τ/s
2,5 + 0,0275 τ	$0.05 \le \tau \le 1000$
29 + 0,001 τ	τ > 1000

Tabelle TD-27 Fehler Z₀

ANT-20SE

7.6 Speicherplatzbedarf

Überprüfen Sie vor dem Start einer Langzeit-Wander-Messung die verfügbare Speicherkapazität Ihrer Festplatte. Die Software des ANT-20SE errechnet anhand der gewählten Gate-Time und der gewählten Abtastrate den zu erwartenden Platzbedarf auf der Festplatte. Wenn nicht genügend Speicherplatz vorhanden ist, wird eine Warnmeldung ausgegeben.

Abtastrate	Speicherplatzbedarf
1/s	ca. 58 kByte/h
30/s	ca. 1,65 MByte/h
60/s	ca. 3,3 MByte/h
300/s	ca. 16,5 MByte/h

Tabelle TD-28 Speicherplatzbedarf in Abhängigkeit von der Abtastrate

8 Messung der Wanderverträglichkeit

nur mit Option BN 3035/90.81 und BN 3035/90.85 möglich

8.1 Maximum Tolerable Wander (MTW)

Hinweis: In der Betriebsart MTW wird der Sender des ANT-20SE üblicherweise extern synchronisiert. Dazu schließen Sie an Buchse [25] ein entsprechendes Referenzsignal

an. Beachten Sie hierzug die "Technischen Daten" des Grundgerätes.

Wird bei der MTW-Messung die interne Taktquelle verwendet, so wird beim Start der MTW-Messung eine entsprechende Meldung ausgegeben.

Nach Start der Messung werden einstellbare Kombinationen von Wanderamplituden und Wanderfrequenzen eingestellt. Das Ausgangssignal wird dabei für jeweils eine Periode der Wanderfrequenz moduliert. Der Meßpunkt wird anschließend mit "OK" (keine Alarme und Bitfehler) oder "Failed" (Alarme oder Bitfehler) gekennzeichnet.

Fehlerquelle wählbar	
SDH	
	Code, B1, B2, B3, MS-REI, MS-RDI, HP-REI, HP-RDI, LP-REI, LP-RDI
SONET	TSE (Test Sequence Error, Bitfehler),
	Code, B1, B2, B3, REI-L, REI-P, REI-V,
	RDI-L, RDI-P, RDI-V
Fehlerschwelle	0 bis 999999
Meßverzögerung (Wartezeit)	0,1 bis 999 s
Einstellbare Wanderfrequenzen	
(Scanfrequenzen) und Wanderamplituden	siehe Bild TD-5, Seite TD-26
Anzeige	Wertetabelle

Voreinstellungen

Bitrate in kbit/s	f1 / A1 in Hz/UI	f2 / A2 in Hz/UI	f3 / A3 in Hz/UI	f4 / A4 in Hz/UI	f5 / A5 in Hz/UI	f6 / A6 in Hz/UI	relevante Normen
1544	0,014/17	0,16/15	0,16/15	0,19/13	3,9/13	10/5	ITU-T G.824
2048	0,00488/36,9	0,01/18	1,67/18	10/3	-	-	ITU-T G.823
6312	0,01/24,4	0,03/18,9	0,1/14,4	03/11,2	1/8,5	10/5	ITU-T G.824
8448	-	-	-	-	-	-	-
34368	0,01/137,5	0,032/137,5	0,13/34,4	4,4/34,4	10/15,1	-	ITU-T G.823
44736	0,01/120,7	0,03/96,1	0,1/81	0,3/73,2	1,675/65,7	10/11	ITU-T G.824
51840	0,016/103,7	0,05/33,2	0,13/13	10/13	-	-	ITU-T G.813 (Option 1)
139264	0,01/557	0,032/557	0,13/139,3	2,2/139,3	10/30,6	-	ITU-T G.823
155520	0,016/311	0,05/99,5	0,13/38,9	10/38,9	-	-	ITU-T G.813 (Option 1)
622080	0,016/1244	0,5/398	0,13/155,5	10/155,5	-	-	ITU-T G.813 (Option 1)

Tabelle TD-29 Einstellwerte der Wanderfrequenz und der Wanderramplitude bei der MTW-Messung

Hinweis: Die Masken in den angegebenen Normen beginnen i.a. bei tieferen Frequenzen (z.B. 12 μHz). Diese tieferen Wanderfrequenzen setzen z.T. sehr lange Meßzeiten voraus. Um die Meßzeiten zu verkürzen, sind deshalb die unteren Frequenzpunkte weggelassen. Wenn Sie trotzdem an diesen Meßpunkten messen wollen, ändern Sie die entsprechenden Default-Einstellungen.

Notizen:

Technische Daten O.172 Jitter/Wander (2488-Mbit/s-Schnittstelle)

Diese technische Daten umfassen die Optionen:

- BN 3035/90.88 Jittergenerator/Jitteranalysator
- BN 3035/90.87 Wandergenerator
- BN 3035/90.89 Wanderanalysator

Die Zahlen in eckigen Klammern [...] entsprechen denen, die am Gerät aufgeführt sind.

Kalibrierte Kenndaten sind mit *** markiert.

Normen

Die Jittererzeugung und die Jittermessung/Wander-Messung erfolgt in Übereinstimmung mit folgenden Normen:

- ITU-T G.825, O.172
- Bellcore GR-253
- ANSI T1.101, T1.105.03

1 Jittergenerator

erfüllt bzw. übertrifft die Anforderungen nach ITU-T O.172

1.1 Bitrate

Bitrate
Maximale Verstimmung (Jitter Generator/Analyzer aktiv)
Modulationsquelle
Kurvenform der Jittermodulation

1.2 Interne Modulationsquelle

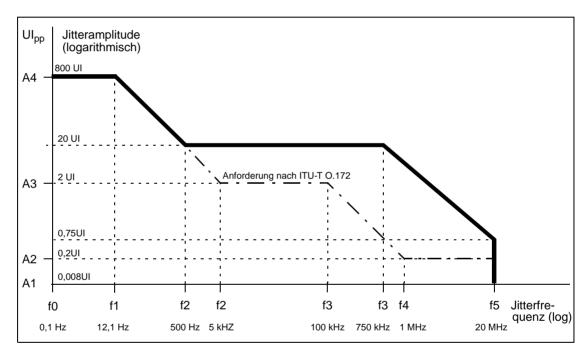


Bild TD-7 Jitteramplitude in Abhängigkeit von der Jitterfrequenz

	Amplitude in Ulpp				Frequenz	uenz in kHz				
Bitrate in kHz	A1	A2	А3	A4	f0	f1	f2/f2	f3/f3	f4	f5
ANT-20SE	0,008	0,75	20	800	0,0001	0,0121	0,5	750	-	20000
ITU-T O.172	-	0,2	2	800	0,000125	0,0121	5	100	1000	20000

Tabelle TD-30 Jitteramplitude und Jitterfrequenz

	Änderungszeitkonstante für Amplitudenänderungen
	Änderungen der Modulation (Amplitude oder Frequenz) erfolgen ohne Phasensprünge.
	Einstellschrittweite der Jitterfrequenz 0,1 Hz bis 1 MHz
	Einstellschrittweite der Jitteramplitude
1.3	Eingang für externe Modulationsspannung [50]
	Buchse
	Eingangsimpedanz75 Ω

1.4 Fehlergrenzen

Die Fehlergrenzen erfüllen bzw. übertreffen die Anforderungen nach ITU-T O.172.

1.4.1 Amplitudenfehler***

Der Amplitudenfehler beschreibt die Abweichung von der eingestellten Amplitude bei sinusförmiger Modulation.

Nenneingangsspannungsbereich...... 0 bis 2,0 V_{pp} (8,2 dBm)

Zugehörige Jitteramplitude (bei 2,0 V_{pp}) einstellbar

Der Wert Q (Variable Error) ergibt sich aus folgender Tabelle:

0.0/	F
Q (Variable Error) in %	Frequenzbereich in kHz
8	5 bis 500
12	500 bis 2000
15	2000 bis 20000
Unterhalb des jeweils and reichs gilt: Q = 12%	gegebenen Frequenzbe-

Tabelle TD-31 Wert Q bei verschiedenen Modulationsfrequenzen

1.4.2 Intrinsic Jitter

1.4.3	Modulationsfrequenz
	Intrinsic Jitter
	Der Intrinsic Jitter gibt den maximalen Ausgangsjitter des ANT-20SE bei einer eingestellten Amplitude von 0 UI an. Dabei wird eine Bandbreite zwischen den Filtern HP1 und LP (siehe Tab. TD-33, Seite TD-40) zugrunde gelegt.

Genauigkeit der Modulationsfrequenz.....±0,1%

2 Jitteranalysator

erfüllt bzw. übertrifft die Anforderungen nach ITU-T O.172

2.1 Bitrate

entsprechend der Bitrate des STM-16-/OC-48-Moduls

 Bitrate
 .2488320 kbit/s

 Zulässige Verstimmung
 .±20 ppm

 Empfangscode
 NRZ (optisch)

2.2 Jittermeßbereich

 Bereich 1
 0 bis 2 UIpp

 Bereich 2
 0 bis 32 UIpp

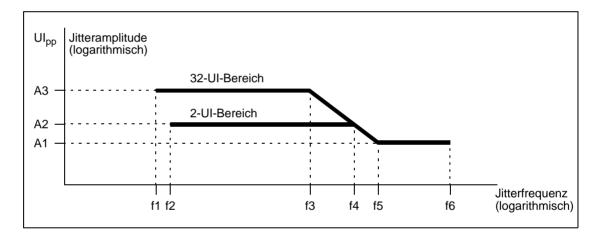


Bild TD-8 Jittermeßbereich

Amplitude in UI _{pp}			Frequenz in	kHz				
A1	A2	А3	f1 f2 f3 f4 f5 f6				f6	
0,2	2	32	5 (0,01)	5 (0,08)	6,25	100	1000	20000

f1 = 10 Hz bei deaktiviertem 5- oder 12-kHz-Hochpaßfilter f2 = ca. 80 Hz bei deaktiviertem 5- oder 12-kHz-Hochpaßfilter

Tabelle TD-32 Jittermeßbereich

2.3 Bewertungsfilter nach ITU-T 0.172

Hochpaß

in kHz

5

HP1 + LP	HP2 + LP			
Voreinstellung der Filter nach ITU-T O.172 (Standardfilter):				
Filtereigenschaften -3dB-Grenzfrequenz-Toleranz. Maximale Dämpfung		f _G ± 10% mindestens 60 dB		
Tiefpaßfilter				
Hochpaß-Filtercharakteristik		1. Ordnung (nach ITU-T O.172)		
Hochpaßfilter		5 kHz, 12 kHz und 1000 kHz		

Tiefpaß

in kHz

20000

Tabelle TD-33 Filtereinstellung nach ITU-T

Tiefpaß

in kHz

20000

Frequenzbereich ohne Hochpaß-Filter (unterer 3-dB-Punkt):

Hochpaß

in kHz

1000

Bereich 1 (2 UI _{pp})	Hz
Bereich 2 (32 UI _{pp})	Hz

2.4 Demodulatorausgang [51]

BuchseBN	С
Innenwiderstand	Ω
Ausgangsspannung (mit 75-Ω-Abschluß)	
Bereich 1 (2 UI _{pp})	J١
Bereich 1 (2 UI _{pp})	JΙ

2.5 Meßwertanzeige

Gemessen wird die positive und negative Jitteramplitude.

Current Values (momentaner Meßwert)

Der momentane Meßwert wird dauernd angezeigt oder grafisch dargestellt. Jitter peak-peak Jitter-Spitze-Spitze-Wert Jitter +peak..... positiver Jitterspitzenwert Anzeigemittelung für Current Values (auswählbar) off, 1, 2, 3, 4, 5 Sekunden Auflösung der Anzeige (momentaner Meßwert) Anzeigebereich 1 (grafische Darstellung) Anzeigebereich 2 (grafische Darstellung) Max. Values (maximaler Meßwert) Der maximale Meßwert wird nur angezeigt, wenn im "Application Manager" eine Messung gestartet wurde. Jitter peak-peak Jitter-Spitze-Spitze-Wert im Meßintervall Jitter +peak.....positiver Jitterspitzenwert im Meßintervall Jitter -peak negativer Jitterspitzenwert im Meßintervall Auflösung der Anzeige (maximaler Meßwert)

2.6 Fehlergrenzen des angezeigten Jitters

Die Fehlergrenzen des angezeigten Jitters entsprechen der ITU-T-Empfehlung O.172.

Die angegebenen Fehlergrenzen gelten unter folgenden Bedinungen:

- Optischer Pegel im Bereich -10 dBm bis -12 dBm (scrambled NRZ)
- Strukturierte Signale (gerahmte Signale gemäß ITU-T O.172)
- Sinusförmige Modulation
- Standardfilter HP1 + LP bzw. HP2 + LP gemäß Kap. 2.3, Seite TD-40, Tabelle TD-33

Der Gesamtmeßfehler setzt sich aus folgenden Einzelfehlern zusammen (additiv):

- Meßfehler bei der Bezugsfrequenz (siehe Kap. 2.6.1, Seite TD-42)
- Frequenzgangfehler (siehe Kap. 2.6.2, Seite TD-43)
- Abweichung des Filterfrequenzgangs vom nominalen Verlauf (siehe Kap. 2.3, Seite TD-40)

2.6.1 Meßgenauigkeit

Der angegebene Meßfehler gilt unter folgenden Bedingungen:

- Bezugsfrequenz: 100 kHz
- Der angegebene Meßfehler gilt im kleinen Meßbereich uneingeschränkt und im großen Meßbereich für Werte >1 UI.

Maximaler Meßfehler*** (ohne Frequenzgangfehler) ±5% des Meßwerts ± W

Der Wert W (Fixed Error) ergibt sich aus folgenden Tabellen:

Filter HP1 + LP Filter HP2 + LP		HP 80 Hz + LP	HP 10 Hz + LP		
W in UI	W in UI	W in UI	W in UI		
0,1	0,05 ¹	0,2	0,3		
1 Nachgewiesen ohne Modulation					

Tabelle TD-34 Wert W (Fixed Error)

Zusätzlicher Fehler bei optischen Signalen mit Pegel >-10 dBm bzw. <-12 dBm typisch ≤0,05 UI

2.6.2 Frequenzgangfehler***

Bei Frequenzen, die nicht gleich der Bezugsfrequenz sind, können zusätzlich zum angegebenen Meßfehler folgende Frequenzgangfehler auftreten:

Frequenzgangfehler entsprechend ITU-T O.172, Tabelle 10

Zusätzlicher Fehler	Frequenzbereich ¹ in kHz				
±2%	1 bis 300				
±3%	300 bis 1000				
±5%	1000 bis 3000				
±10%	3000 bis 10000				
±15%	10000 bis 20000				
Unterhalb des angegebenen Frequenzbereichs wird der					

¹ Unterhalb des angegebenen Frequenzbereichs wird der dort gültige Fehler fortgeschrieben

Tabelle TD-35 Frequenzgangfehler

Der angegebene Frequenzgangfehler gilt für eine Jitteramplitude von 0,15 UI_{pp} und einen Umgebungs-Temperaturbereich von (+23 \pm 10) °C.

2.7 RMS-Jitter

Wertebereich und Auflösung

	2-UI-Bereich (Peak - Peak)	32-UI-Bereich (Peak - Peak)	
RMS-Wertebereich	0 bis 1 UI	0 bis 16 UI	
Auflösung	0,001 UI	0,01 UI	

Tabelle TD-36 Wertebereich und Auflösung

Meßgenauigkeit

Gültig bei Anwendung des 12-kHz-RMS-Filters und Nominalsignalen.

2-UI-Bereich	
Integrationszeit	1, 2, 5, 10, 20, 40, 80 Sekunden (einstellbar)
Voreinstellung	1 Sekunde

2.8 Phasehits

Wenn das demodulierte Jittersignal eine einstellbare positive Schwelle überschreitet oder eine negative Schwelle unterschreitet, so wird dies als Ereignis gezählt. Die Ereignisse werden durch getrennte Zähler erfaßt. Der Zählerstand gibt die aktuelle Anzahl der Schwellenüber- und -unterschreitungen der Messung an.

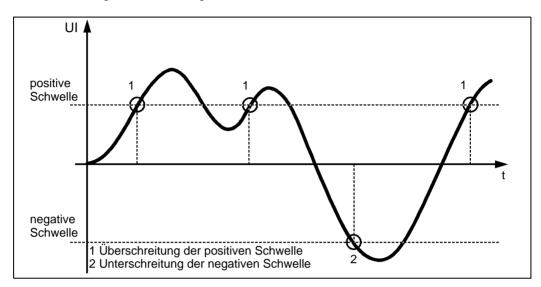


Bild TD-9 Beispiel: Demoduliertes Jittersignal (Jitter-Zeit-Funktion)

Anzeige

- Zählwert für die Überschreitung der positiven Schwelle
- Zählwert für die Unterschreitung der negativen Schwelle

Eingabe der Schwellen (positive und negative Schwellen)

Wertebereich im Bereich 1 (2 UI _{pp})	0,1 UI_p bis 1 UI_p
Schrittweite	
Wertebereich im Bereich 2 (32 UI _{pp})	
Schrittweite	
Alarme	

Während eines Alarms werden die Zähler gestoppt. Die Zählung wird fortgesetzt, wenn der Alarm beendet ist und die Gate-Zeit noch nicht abgelaufen ist. Das Auftreten eines Alarms wird durch ein gelbes Warnzeichen vor dem Meßergebnis angezeigt. Das Warnzeichen wird gelöscht, wenn eine neue Messung gestartet wird.

Alarme LTI (Synchronisationsausfall) und Netzausfall

Fehlergrenze der Schwelleneinstellung......±5% des Schwellwertes, zuzüglich der Fehler des Jittermessers

3 Messung der Jitterverträglichkeit

3.1 Fast Maximum Tolerable Jitter (F-MTJ)

Nach Start der Messung werden einstellbare Kombinationen von Jitteramplituden und Jitterfrequenzen eingestellt. Der Meßpunkt wird anschließend mit "OK" (keine Alarme und Bitfehler) oder "Failed" (Alarme oder Bitfehler) gekennzeichnet. Die Voreinstellungen in der Tabelle stellen die Eckpunkte der in den ITU-T-Empfehlungen angegebenen Grenzkurven dar.

Fehlerquelle wählbar	
SDH	
	B1, B2, B3, MS-REI, MS-RDI, HP-REI, HP-RDI, LP-REI, LP-RDI
SONET	· · · · · · · · · · · · · · · · · · ·
	B1, B2, B3, REI-L, REI-P, REI-V,
	RDI-L, RDI-P, RDI-V
Fehlerschwelle	0 bis 999999
Meßverzögerung (Erholzeit)	0,1 bis 999 s
Einstellbare Jitterfrequenzen (Scan-Frequenzen)	
und Jitteramplituden	siehe Tab. TD-30, Seite TD-36
Anzeige	Wertetabelle

Voreinstellungen

f1 / A1	f2 / A2		f4 / A4	f5 / A5
in kHz/UI _{pp}	in kHz/UI _{pp}		in kHz/UI _{pp}	in kHz/UI _{pp}
0,012/622	5/1,5	100/1,5	1000/0,15	20000/0,15

Tabelle TD-37 Einstellwerte der Jitterfrequenz und der Jitteramplitude bei der Fast-MTJ-Messung

Die Voreinstellungen in der Tabelle stellen die Eckpunkte der in der ITU-T-Empfehlung G.825 angegebenen Grenzkurve dar.

3.2 Maximum Tolerable Jitter (MTJ)

Nach Start der Messung wird die Jitteramplitude des Digitalsignals so lange geändert, bis der Bitfehlermesser die Überschreitung einer vorgegebenen Schwelle erkennt. Es wird derjenige Meßpunkt als Jitterverträglichkeitswert ausgegeben, der um ein Suchinkrement niedriger liegt.

Fehlerquelle wählbar SDH
Fehlerschwelle
Meßverzögerung (Erholzeit)
Gate-Zeit
Die Jitterfrequenzen (Scan-Frequenzen) können vom Benutzer in Form von bis zu 20 frei programmierbaren Frequenzen im Bereich von 0,1 Hz bis 20 MHz definiert werden.
Anzeige
Zusätzlich ist die Einblendung von Toleranzmasken möglich.

Voreingestellte Scan-Frequenzen

f1	f2	f3	f4	f5	f6	f7	f8	f9	f10
in kHz									
0,012	0,1	1	5	20	100	500	1000	5000	

Tabelle TD-38 Voreingestellte Scan-Frequenzen

Voreingestellte Toleranzmaske

f1 / A1	f2/A2	f3 / A3	f4 / A4	f5 / A5
in kHz/UI _{pp}	in kHz/Ul _{pp}	in kHz/UI _{pp}	in kHz/Ul _{pp}	in kHz/UI _{pp}
0,0121/622	5/1,5	100/1,5	1000/0,15	20000/0,15

Tabelle TD-39 Voreingestellte Toleranzmaske

4 Messung der Jitterübertragungsfunktion

4.1 Jitter Transfer Function (JTF)

Nach dem Start einer Messung wird nacheinander bei den vorgewählten Jitterfrequenzen eine vom Benutzer wählbare Amplitude eingestellt. Der Jitteranalysator ermittelt dazu den vom Prüfling übertragenen Jitter. Der Jitter wird selektiv gemessen, d.h. mit einem auf die Modulationsfrequenz abgestimmten Bandpaßfilter. Damit wird sichergestellt, daß Störfrequenzen, die außerhalb der Bandbreite des Bandpaßfilters liegen, das Meßergebnis nicht beeinträchtigen.

Aus dem logarithmischen Verhältnis von Ausgangs- zu Eingangsjitter wird punktweise die Jitterübertragungsfunktion berechnet:

Jitterübertragungsfunktion $H(f_j) = 20 lg \frac{Ausgangsjitter}{Eingangsjitter}$

Durch eine Kalibrierungsmessung, die entweder vor jeder Messung durchgeführt wird (empfohlen) oder die abgespeichert werden kann, wird eine größtmögliche Meßgenauigkeit erreicht. Dazu wird während einer Schleifenmessung (Verbindung TX - RX) der Eigenfehler des Analysators bei jeder gewählten Scanfrequenz ermittelt. Bei der anschließenden Messung des Prüflings werden die Ergebnisse um den Eigenfehler korrigiert.

Zusätzlich ist die Einblendung von Toleranzmasken möglich.

Voreingestellte Scan-Frequenzen und Amplituden nach ITU-T G.825 und Bellcore GR-253

Anzeige Wertetabelle oder doppelt-logarithmische Grafik

f1/Ampl.	f2/Ampl	f3/Ampl	f4/Ampl	f5/Ampl	f6/Ampl	f7/Ampl	f8/Ampl
(kHz/Ul)	(kHz/UI)	(kHz/UI)	(kHz/UI)	(kHz/UI)	(kHz/UI)	(kHz/UI)	(kHz/UI)
0,1/15	1/3,0	10/1,5	100/1,5	500/0,3	2000/0,15	5000/0,15	20000/0,15

Tabelle TD-40 Voreingestellte Scan-Frequenzen und Amplituden

Die voreingestellten Scan-Frequenzen und -Amplituden liegen auf bzw. unterhalb der in den jeweiligen Normen angegebenen Grenzkurven der Jitterverträglichkeit. Dadurch wird gewährleistet, daß die JTF-Messung nicht mit unzulässig hohem Jitter durchgeführt wird.

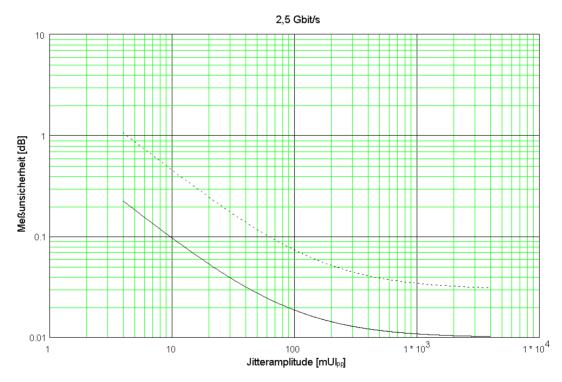
Voreingestellte Toleranzmaske nach ITU-T G.958, Bellcore GR-253 und ANSI T1.105.03

Frequenz in kHz	f1 = 0,01	f2 = 2000	f3 = 20000
Maximaler Pegel in dB	0,1	0,1	-19,9
Minimaler Pegel in dB	-99,9	-99,9	-99,9

Die voreingestellte untere Toleranzmaske (min. dB) ist in allen Fällen -99,9 dB und ist in der Grafik nicht sichtbar.

4.2 Meßfehler (typisch)

Der Gesamtfehler F_{Gesamt} setzt sich aus den Teilfehlern F1 + F2 + F3 zusammen.


F1 und F2 sind abhängig von der gesendeten Jitteramplitude (F1) und von der gemessenen Jitteramplitude (F2). Sie lassen sich aus dem nachfolgenden Diagramm ablesen.
F3 ist bis zu einem Maximalwert abhängig von der gemessenen Jitterdämpfung D (in dB).

Es gilt: $F3 = D \cdot k$

Hinweis: Der Wert F3 kann maximal so groß werden wie der Wert F3_{MAX}.

k	F3 _{MAX}
0,1	2 dB

Tabelle TD-41 Faktor k und Maximalwert F3_{MAX}

- F1: Meßunsicherheit in Abhängigkeit von der Sendeamplitude

··· F2: Meßunsicherheit in Abhängigkeit von der gemessenen Jitteramplitude

Bild TD-10 Meßunsicherheit bei 2,5 Gbit/s

Alle Angaben gelten unter folgenden Bedingungen:

Optischer Nominalpegel

Temperatur: 20 °C bis 26 °C

Integrationszeit: 5 sEinschwingzeit (Settling Time): 1 s

Anwärmzeit für das Gesamtgerät: 30 Minuten

Zusätzlich muß die Bitrate 2488 Mbit/s für mindestens fünf Minuten eingeschaltet sein.

• Kalibrierung unmittelbar vor der Messung

Jitteramplitude am Jittermesser: 4 mUl bis 4 Ul
Frequenzbereich: 1 kHz bis 20 MHz

Beispiel

Bei einer Sendeamplitude von 1000 mUI_{pp} wird eine Jitterübertragung von -21 dB gemessen.

Um den Gesamtfehler zu berechnen, werden die Fehler F1 und F2 aus Bild TD-10 abgelesen. Der Fehler F3 wird nach oben stehender Formel berechnet (k wird aus der Tabelle TD-41 entnommen).

F1 = 0.011 dB (aus Bild TD-10)

Aus der Jitterübertragungsfunktion errechnet sich ein gemessener Jitter von ca. 90 mUI.

$$H(f_j) = 20 lg \frac{gemessener Jitter}{gesendeter Jitter} = 20 lg \frac{x}{1000 mUI} = -21 dB$$

Mit diesem Wert kann F2 aus Bild TD-10 abgelesen werden.

F2 = 0,08 dB (aus Bild TD-10)

$$F3 = 21 dB \cdot 0.1 = 2.1 dB$$

Der Wert für F3 ist größer als der Wert F3_{MAX} aus Tabelle TD-41 (2,0 dB). Daher wird der Wert F3_{MAX} = 2,0 dB für F3 verwendet.

5 Wander-Erzeugung

nur mit Option BN 3035/90.88 und BN 3035/90.87 und BN 3035/90.81

5.1 Bitrate

Bitrate
Kurvenform der Wandermodulation
Frequenzbereich
Einstellschrittweite der Wanderfrequenz
Amplitudenbereich
Einstellschrittweite der Wanderamplitude

5.2 Wanderamplitude, Wanderfrequenz und Taktverstimmung

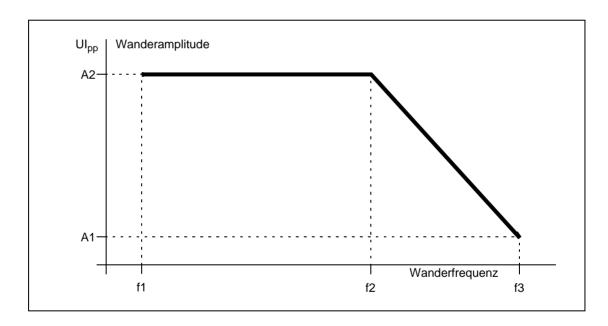


Bild TD-11 Maximale Wanderamplitude in Abhängigkeit von der Wanderfrequenz mit der Taktverstimmung als Parameter

Taktverstimmung	A1 in UI	A2 in UI	f1 in µHz	f2 in Hz	f3 in Hz
0 ppm	2340	200000	10	0,117	10
50 ppm	390	200000	10	0,0195	10

Tabelle TD-42 Maximale Wanderamplitude in Abhängigkeit von der Wanderfrequenz mit der Taktverstimmung als Parameter

Die Maximalwerte der Amplituden-/Frequenzkombinationen, die eingestellt werden können, sind von der Taktverstimmung abhängig.

Bei gegebener Modulationsfrequenz ergibt sich die maximal einstellbare Amplitude als der kleinere Wert von 200000 UI oder dem Wert, der sich aus der folgenden Formel errechnet:

$$A_{\text{max}} = \frac{23400 - 390 \times \Delta f}{f_{\text{mod}}}$$

 A_{max} = maximal einstellbare Amplitude in UI Δf = Betrag der Taktverstimmung in ppm f_{mod} = Modulationsfrequenz in Hz

5.3 Fehlergrenzen

5.3.1 Amplitudenfehler

Der Amplitudenfehler beschreibt die Abweichung von der eingestellten Amplitude bei sinusförmiger Modulation.

5.3.2 Intrinsic Jitter/Wander

Der Intrinsic Jitter/Wander gibt den maximalen Ausgangsjitter/-wander des ANT-20SE bei einer eingestellten Amplitude von 0 UI an. Dabei wird eine Bandbreite zwischen den Filtern HP1 und LP (siehe Tab. TD-33, Seite TD-40) zugrunde gelegt.

Intrinsic Jitter/Wander.....0,04 UI

5.3.3 Modulationsfrequenz

5.4 Synchronisation

In der Betriebsart Wandergenerator wird der Sender des ANT-20SE üblicherweise extern synchronisiert. Dazu schließen Sie an Buchse [25] ein entsprechendes Referenzsignal an. Beachten Sie hierzu auch die "Technischen Daten" des Grundgeräts.

6 Wander-Messung

nur mit Option BN 3035/90.88 und BN 3035/90.89 möglich

6.1 Referenztakt [54]

Tip: Sie können eine Wander-Messung nur mit externem Referenztakt durchführen! Für diesen sind die unten genannten Taktfrequenzen und Eingangspegel zulässig.

Buchse	BNC
Eingangsimpedanz	75 Ω
Taktfrequenzen	I0 MHz
Zulässiger Eingangspegel	s 5 V _{pp}
Überwachung LTI (Loss of Timing Inform	mation)

6.2 Meßbereich

Wander-Amplitudenbereich	.±1 x 10 ⁶ s
Maximal zulässige Phasenänderungsgeschwindigkeit	
Abtastrate 1/s	. 1000 UI/s
Abtastrate ≥ 30/s	10000 UI/s

Der Wanderfrequenzbereich wird nach oben hin durch ein Tiefpaßfilter erster Ordnung begrenzt. Das Tiefpaßfilter wird in Abhängigkeit von der gewählten Abtastrate automatisch umgeschaltet.

Abtastrate	Tiefpaßfilter/f _G		
1/s	0,1 Hz		
30/s	10 Hz		
60/s	20 Hz		
300/s	100 Hz		

Tabelle TD-43 Tiefpaßfilter in Abhängigkeit von der Abtastrate

Tiefpaßfilter

Filtercharakteristik
Meßbandbreite
Abweichung -3-dB-Grenzfrequenz
Maximale Dämpfung mindestens 30 dB
Welligkeit im Durchlaßbereich 1 Hz bis 10 Hz (bezogen auf die Dämpfung bei 0,1 Hz) ±0,2 dB

6.3 Meßwertanzeige

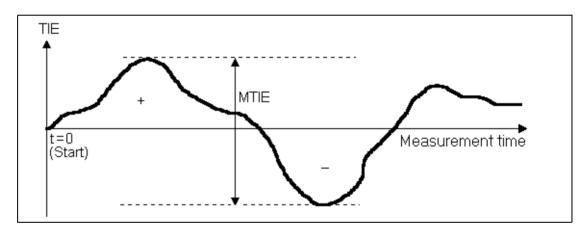


Bild TD-12 Beispiel: Wander-Messung über der Meßzeit

6.4 Genauigkeit

Der angegebene Meßfehler gilt nach einer Anwärmzeit des ANT-20SE von mindestens 30 Minuten und unter einer maximalen Umgebungstemperaturänderung von 5 K.

TIE-Gesamtfehler für jede TIE-Messung über ein Beobachtungsintervall τ $<\pm 5\%$ des TIE-Meßwertes $\pm Z_0$

Z₀ gemäß folgender Tabelle:

Z ₀ (τ)/ns	Beobachtungsintervall τ/s	
2,5 + 0,0275 τ	$0.05 \le T \le 1000$	
29 + 0,001 τ	τ > 1000	

Tabelle TD-44 Fehler Z₀

6.5 Speicherplatzbedarf

Überprüfen Sie vor dem Start einer Langzeit-Wander-Messung die verfügbare Speicherkapazität Ihrer Festplatte. Die Software des ANT-20SE errechnet anhand der gewählten Gate-Time und der gewählten Abtastrate den zu erwartenden Platzbedarf auf der Festplatte. Wenn nicht genügend Speicherplatz vorhanden ist, wird eine Warnmeldung ausgegeben.

Abtastrate	Speicherplatzbedarf			
1/s	ca. 58 kByte/h			
30/s	ca. 1,65 MByte/h			
60/s	ca. 3,3 MByte/h			
300/s	ca. 16,5 MByte/h			

Tabelle TD-45 Speicherplatzbedarf in Abhängigkeit von der Abtastrate

7 Messung der Wanderverträglichkeit

nur mit Option BN 3035/90.88 und BN 3035/90.87 und BN 3035/90.81 möglich

7.1 Maximum Tolerable Wander (MTW)

Hinweis: In der Betriebsart MTW wird der Sender des ANT-20SE üblicherweise extern syn-

chronisiert. Dazu schließen Sie an Buchse [25] ein entsprechendes Referenzsignal an. Beachten Sie hierzug die "Technischen Daten" des Grundgerätes.

Wird bei der MTW-Messung die interne Taktquelle verwendet, so wird beim Start der

MTW-Messung eine entsprechende Meldung ausgegeben.

Nach Start der Messung werden einstellbare Kombinationen von Wanderamplituden und Wanderfrequenzen eingestellt. Das Ausgangssignal wird dabei für jeweils eine Periode der Wanderfrequenz moduliert. Der Meßpunkt wird anschließend mit "OK" (keine Alarme und Bitfehler) oder "Failed" (Alarme oder Bitfehler) gekennzeichnet.

Fehlerquelle wählbar	
SDH	B1, B2, B3, MS-REI, MS-RDI,
SONET	HP-REI, HP-RDI, LP-REI, LP-RDI TSE (Test Sequence Error, Bitfehler).
	B1, B2, B3, REI-L, REI-P, REI-V,
	RDI-L, RDI-P, RDI-V
Fehlerschwelle	0 bis 999999
Meßverzögerung (Wartezeit)	0,1 bis 999 s
Einstellbare Wanderfrequenzen	
(Scanfrequenzen) und Wanderamplituden	siehe Tab. TD-42, Seite TD-50
Anzeige	Wertetabelle

Voreinstellungen

Bitrate in kbit/s	f1 / A1	f2 / A2	f3 / A3	f4 / A4	f5 / A5	f6 / A6	relevante
	in Hz/UI	in Hz/UI	in Hz/UI	in Hz/UI	in Hz/UI	in Hz/UI	Normen
2488320	0,016/4977	0,05/1593	0,13/622	10/622	-	-	ITU-T G.813 (Option 1)

Tabelle TD-46 Einstellwerte der Wanderfrequenz und der Wanderramplitude bei der MTW-Messung

Hinweis: Die Masken in den angegebenen Normen beginnen i.a. bei tieferen Frequenzen (z.B. 12 μHz). Diese tieferen Wanderfrequenzen setzen z.T. sehr lange Meßzeiten voraus. Um die Meßzeiten zu verkürzen, sind deshalb die unteren Frequenzpunkte weggelassen. Wenn Sie trotzdem an diesen Meßpunkten messen wollen, ändern Sie die entsprechenden Default-Einstellungen.

Notizen:

6

ANT-20SE Advanced Network Tester

ATM-Modul

BN 3060/90.50

Softwareversion 7.20

Technische Daten

Inhalt

Technische Daten ATM-Modul

1	ATM-S	endeteilTD	-1
	1.1	ScramblingTD	-1
	1.2	Fehlereinblendung (Anomalien)TD	-1
	1.3	Alarmerzeugung (Defekte)TD	-2
	1.4	TestkanalTD	-3
	1.5	Hintergrundlast	-4
	1.6	Füllzellen	-4
	1.7	AAL-1-SegmentationTD	-4
2	ATM-E	mpfangsteil	-5
	2.1	DescramblingTD	-5
	2.2	MeßartenTD	-5
	2.2.1	Fehlermessung (Anomalien)	-5
	2.2.2	Alarmerkennung (Defekte)	-6
	2.2.3	ATM-Performance-MessungenTD	-6
	2.2.4	Nutzkanalanalyse und LastmessungTD	-7
	2.2.5	AAL-1 Reassembly	-9

Notizen:

Technische Daten ATM-Modul

Diese technische Daten umfassen die Option BN 3035/90.70 (ATM-Funktionalität).

Die technischen Daten der "ATM-Mappings" sind in der Bedienungsanleitung BN 3035/98.15 beschrieben.

1 ATM-Sendeteil

1.1 Scrambling

Das Scrambling erfolgt nach der ITU-T-Empfehlung I.432 (X⁴³+1). Die Funktion ist abschaltbar.

1.2 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in den "Technische Daten" des Grundgeräts beschrieben werden, können folgende Anomalien eingeblendet werden.

Fehlerart Anomalie	Single	Rate ¹	Sensor-Schwellen
			M in N
HEC uncor. ²	ja	1E-2 bis 1E-6	M = 1 bis 31 N = M + 1 bis M + 31
HEC cor. ³	ja	1E-2 bis 1E-6	M = 1 bis 31 N = M + 1 bis M + 31
AAL-1 Cell loss	ja	1E-3 bis 1E-6	-
AAL-1 CRC	ja	1E-3 bis 1E-6	-
AAL-1 PE	ja	1E-3 bis 1E-6	-

Mantisse: nur 1, Exponent: -1 bis -6 (Ganzzahlen)

Tabelle TD-1 Einstellbare Fehlerarten (Anomalien), zusätzlich zum Grundgerät

Die Fehler AAL-1 Cell loss, AAL-1-CRC und AAL-1-PE beziehen sich auf den Meßkanal. Fehler im Testmuster (TSE) werden in die ATM-Payload bzw. in die AAL-1-Payload des Testkanals eingeblendet.

Korrigierbare und nicht korrigierbare Headerfehler werden in den Gesamtzellenstrom eingeblendet.

² nicht korrigierbare Headerfehler

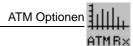
³ korrigierbare Headerfehler

1.3 Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in den "Technische Daten" des Grundgeräts beschrieben sind, können folgende Defekte erzeugt werden.

Defekt	Test Sensor-Funktion	Single
	Ein/Aus	
LCD ¹	ja	ja
VP-AIS	ja	ja
VP-RDI	ja	ja
VC-AIS ²	ja	ja
VC-RDI ³	ja	ja
Vx-AIS ⁴	ja	ja
Vx-RDI ⁴	ja	ja

¹ LCD (Loss of Cell Delineation) wird durch nicht korrigierbare Headerfehler in ≥ 7 aufeinanderfolgenden Zellen erzeugt.


Tabelle TD-2 Einstellbare Alarmtypen (Defekte), zusätzlich zum Grundgerät

Bei aktivierter Einblendung von VC-AIS oder VP-AIS wird der Testkanal abgeschaltet.

² AIS: Alarm Indication Signal; VC: Virtual Channel; VP: Virtual Path

³ RDI: Remote Defect Indication

⁴ Bei Vx-AIS bzw. Vx-RDI werden die Alarme in VP und VC parallel eingeblendet.

1.4 Testkanal

Zellen Header UNI/NNI, VCI, VPI, PT und CLP..... einstellbar HEC wird automatisch gebildet **Pavload** Lastprofile Constant, Equidistant, Burst **Lastprofil Constant** Auflösung: abhängig von eingestelltem Lastbereich Einstellbereich Equidistant Auflösung: abhängig von eingestelltem Zellabstandsbereich **Einstellbereich Burst**

Maximale Burstperiode......32767 Zellen/89 ms

1.5 Hintergrundlast

Die Hintergrundlast wird mit Sequenzen speicherbasierend erzeugt. Der Vordergrundverkehr (Testkanal) hat Priorität.

Header	frei einstellbar
Payload	byteweise konstant, Byte frei einstellbar
Maximaler Wiederholungsfaktor für Lastzelle (n1)	
Maximale Anzahl der Leerzellen nach Lastzelle (n2) .	
Maximaler Wiederholungsfaktor für Sequenz	
(n1 Lastzellen, n2 Leerzellen)	
Maximale Anzahl der Sequenzen	

1.6 Füllzellen

Der Zellstrom wird mit IDLE-Zellen oder UNASSIGNED-Zellen aufgefüllt. Die Funktion ist umschaltbar.

1.7 AAL-1-Segmentation

Im Testkanal können in der AAL-1-PDU Signale mit den Systembandbreiten 1,5 Mbit/s, 2 Mbit/s, ... gesendet werden.

2 ATM-Empfangsteil

2.1 Descrambling

Das Descrambling erfolgt nach der ITU-T-Empfehlung I.432 (X⁴³+1). Die Funktion ist abschaltbar.

2.2 Meßarten

2.2.1 Fehlermessung (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kapitel 2.3.3 "Technische Daten" des Grundgeräts beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden.

Anomalie	LED	Erläuterung	
HCOR	-	Correctable Header Error	
HUNC	-	Uncorrectable Header Error	
CER	-	Cell Error Ratio	
CLR	-	Cell Loss Ratio	Bei Messungen mit
CMR	-	Cell Misinsertion Rate	Testzellen
AAL-1-CRC	-	AAL1 CRC Error	
AAL-1-PE	-	AAL1 Parity Error	bei AAL-1 Messungen
AAL-1-CLR	-	AAL1 Cell Loss Ratio	, wessurigen
AAL-1-CMR	-	AAL1 Cell Misinsertion Rate	

Tabelle TD-3 Anzeige und Auswertung von Anomalien

Die Fehler HUNC, HCOR beziehen sich auf den kompletten Zellstrom, alle anderen Fehler hingegen auf den Meßkanal.

2.2.2 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kapitel 2.3.1 "Technische Daten" des Grundgeräts beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden.

Defekt	LED	Erläuterung	
LCD	LOF / LCD	Loss of Frame/Loss of Cell Delineation	
OCLR	-	Cell Loss Overflow ¹	bei Messungen
OCMR	-	Cell Misinserted Overflow ²	mit Testzellen
VC-AIS	-	Virtual Channel Alarm Indication Signal	
VC-RDI	-	Virtual Channel Remote Defect Indication	
VP-AIS	-	Virtual Path Alarm Indication Signal	
VP-RDI	-	Virtual Path Remote Defect Indication	
AAL-1-OOS	-	AAL1 Out of Sync	

¹ Mehr als 255 Zellverluste in 100 ms oder relativ zur letzten Testzelle

Tabelle TD-4 LED-Anzeigen der zusätzlichen Alarme

2.2.3 ATM-Performance-Messungen

Error Related Performance Parameter

Die Messung erfolgt mit Testzellen.

Meßergebnisse

Lost Cell Count, Cell Loss Ratio	CLR
Misinserted Cell Count, Cell Misinserted Rate	MR
Error Cell Count, Cell Error Ratio	ER

Cell Transfer Delay

Die Zellaufzeitmessung erfolgt mit Testzellen.

Anzeige	Häufigkeitsverteilung
Auflösung	160 ns bis 0,355 s
Meßbereich	20 µs bis 42,9 s
Meßbereichsoffset	0 bis 0,167 s
Einheit	

Zellen mit Laufzeiten außerhalb des Meßbereichs werden in Klasse 0 (underflow) oder Klasse 127 (overflow) gezählt.

² Mehr als 255 falsch eingefügte Zellen in 100 ms oder relativ zur letzten Testzelle

Cell Delay Variation

Die Zellaufzeitabweichung wird mit Testzellen gemessen.

Die Ergebnisse sind nur gültig, wenn keine Laufzeiten außerhalb des Meßbereichs erkannt wurden.

2.2.4 Nutzkanalanalyse und Lastmessung

Zellenfilter (VCI, VPI) zur Extraktion des Testkanals.

Das VCI-Filter ist abschaltbar.

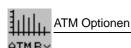
Durchschnittszellrate

Die Messung erfolgt parallel über alle Verbindungen und gleichzeitig im Testkanal.

elsintervall
uflösung

Lastanzeige

Einheit	Mbit/s, Cells/s, %
Skalierung	linear, logarithmisch


Spitzenzellrate

Die Messung erfolgt im Testkanal.

Леßintervall	Meßintervall
Auflösung	Auflösung

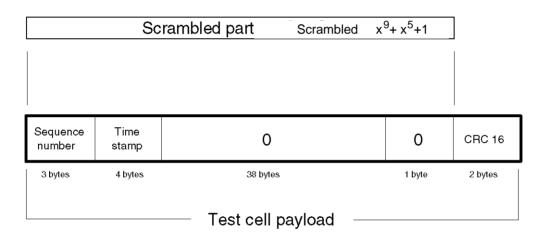
Lastanzeige

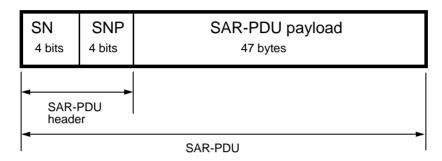
Einheit	Mbit/s, Cells/s, %
Skalierung	linear, logarithmisch

Kanalauslastungshistogramm

Meßintervalle100 msAnzahl der Klassen101Klasse "0" enthält die Anzahl der 100-ms-Meßintervalle, in denen 0% Last gemessen wurde.Klassenbreite1%LastanzeigeMbit/s, Cells/s, %
Zellverteilung im Nutzkanal
Darstellung der Zellen im Nutzkanal klassifiert nach Nutzzellen, OAM-Zellen und Nutzzellen mit markierter CLP.
Meßintervalle

Testzellenformat




Bild TD-1 Testzellenformat nach ITU-T O.191 (Draft 4/95)

2.2.5 AAL-1 Reassembly

Das Reassembling von AAL-1-strukturierten Zellen erfolgt aus der SAR-PDU; das Format ist im Bild unten ersichtlich. Die Fehlermessung "TSE" wird mit gerahmten oder ungerahmten Quasizufallsfolgen (PRBS) durchgeführt, die in der SAR-PDU-Payload gemappt wurden.

Für Fehlermessungen stehen folgende Payloadmuster zur Verfügung:

- PRBS ungerahmt
- PRBS in PCM-30-Rahmen
- PRBS in PCM-30-Rahmen (CRC-codiert)

SN: Sequence Number PDU: Protocol Data Unit

SNP: Sequence Number Protection SAR: Segmentation and Reassembly

Bild TD-2 SAR-PDU-Format für AAL-1-Zellen

Notizen:

6

ANT-20SE Advanced Network Tester

ATM-Mappings

BN 3060/90.52 und BN 3060/90.53

für ATM-Modul BN 3060/90.50 und Broadband Analayzer/Generator BN 3060/90.51

Softwareversion 7.20

Technische Daten

Inhalt

Technische Daten ATM-Mappings

1	Mappii	ng STM-1 C4, ATM in 155,52 Mbit/s	TD-1
2	Mappii	ng STS-3c, ATM in 155,52 Mbit/s	TD-2
3	Mappii	ng STS-1, ATM in 51,840 Mbit/s	TD-3
4	Марріі	ng E4, ATM in 139,264 Mbit/s	TD-4
	4.1	Overhead	TD-4
	4.2	Alarmerzeugung (Defekte)	TD-4
	4.3	Fehlereinblendung (Anomalien)	TD-5
	4.4	Fehlermessung (Anomalien)	TD-5
	4.5	Alarmerkennung (Defekte)	TD-5
5	Марріі	ng E3, ATM in 34,368 Mbit/s	TD-6
	5.1	Overhead	TD-6
	5.2	Alarmerzeugung (Defekte)	TD-6
	5.3	Fehlereinblendung (Anomalien)	TD-7
	5.4	Fehlermessung (Anomalien)	TD-7
	5.5	Alarmerkennung (Defekte)	TD-7
6	Марріі	ng E1, ATM in 2,048 Mbit/s	TD-8
7	Марріі	ng DS3, ATM in 44,736 Mbit/s (PLCP, HEC based)	TD-9
	7.1	PLCP-based Mapping	TD-9
	7.1.1	Overhead	TD-9
	7.1.2	Alarmerzeugung (Defekte)	TD-10
	7.1.3	Fehlereinblendung (Anomalien)	TD-10
	7.1.4	Fehlermessung (Anomalien)	TD-11
	7.1.5	Alarmerkennung (Defekte)	TD-11
	7.2	HEC-based Mapping	TD-12
	7.2.1	Alarmerzeugung (Defekte)	TD-12
	7.2.2	Fehlereinblendung (Anomalien)	TD-12
	7.2.3	Fehlermessung (Anomalien)	TD-12
	7.2.4	Alarmerkennung (Defekte)	TD-13

i

8	Mappin	g DS1, ATM in 1,544 Mbit/s
	8.1	Alarmerzeugung (Defekte)
	8.2	Fehlereinblendung (Anomalien)
	8.3	Fehlermessung (Anomalien)TD-1
	8.4	Alarmerkennung (Defekte)
9	Mappin	g STM-1 C3, ATM in 155,52 Mbit/s
10	Mappin	g STS-1 SPE, ATM in 44,736 Mbit/s
11	Mappin	g VC3, ATM in 44,736 Mbit/s

Technische Daten ATM-Mappings

1 Mapping STM-1 C4, ATM in 155,52 Mbit/s

Diese Mapping-Struktur ist in den nachfolgenden Optionen enthalten:

- ATM-Modul, BN 3035/90.70
- Broadband Analyzer/Generator, BN 3035/90.80

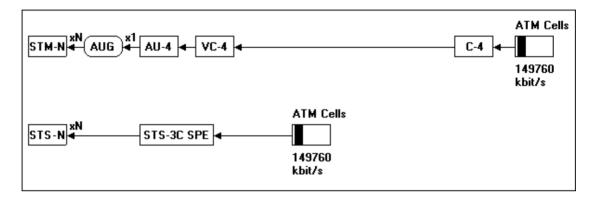
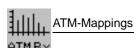



Bild TD-1 Mapping-Struktur ATM-Zellstrom 150 Mbit/s in STM-1/STS-3c

Im Registerteil "STM-1-Mapping" finden Sie die technischen Daten zu folgenden Themen:

- Overhead
- Alarmerzeugung (Defekte)
- Fehlereinblendung (Anomalien)
- · Auswertung des Overhead
- Fehlermessung (Anomalien)
- Alarmerkennung (Defekte)

2 Mapping STS-3c, ATM in 155,52 Mbit/s

Diese Mapping-Struktur ist in den nachfolgenden Optionen mit enthalten:

- ATM-Modul, BN 3035/90.70
- Broadband Analyzer/Generator, BN 3035/90.80

Im Registerteil "STS-1-Mapping" (Kapitel "STS-3c-Mapping") finden Sie die technischen Daten zu folgenden Themen:

- Overhead
- Alarmerzeugung (Defekte)
- Fehlereinblendung (Anomalien)
- · Auswertung des Overhead
- Fehlermessung (Anomalien)
- Alarmerkennung (Defekte)

3 Mapping STS-1, ATM in 51,840 Mbit/s

Option 3035.90.71

• Enthält das ATM-Mapping für STS-1 nach ITU-T G.707 und Draft ANSI T1.105.02-199X.

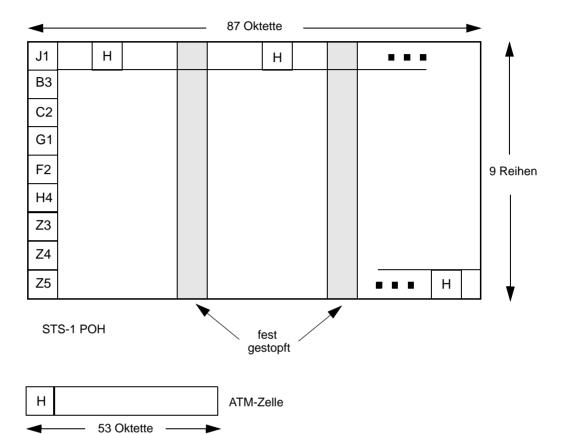
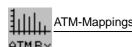



Bild TD-2 ATM-Mapping für STS-1 (51,840 Mbit/s)

Im Registerteil "STS-1-Mapping" finden Sie die technischen Daten zu folgenden Themen:

- Overhead
- Alarmerzeugung (Defekte)
- Fehlereinblendung (Anomalien)
- Auswertung des Overhead
- Fehlermessung (Anomalien)
- Alarmerkennung (Defekte)

4 Mapping E4, ATM in 139,264 Mbit/s

Option 3035/90.72

- Rahmen nach G.832
- ATM Mapping nach G.804

4.1 Overhead

OH-Byte	Option 3035/90.72
FA1(hex)	"F6"
FA2 (hex)	"28"
EM (hex)	eingeblendet über Parity-Bildung
TR(ASCII)	"WG E4-TRACE"
MA(hex)	"10"
NR (hex)	"00"
GC (hex)	"00"
P1 (hex)	"00"
P2 (hex)	"00"

Tabelle TD-1 Belegung des OH

4.2 Alarmerzeugung (Defekte)

Folgende Alarmtypen können folgende Defekte erzeugt werden:

Defekt	Test Sensor Funktion	Sensor Schwellen
	Ein/Aus	M in N
AIS	ja	-
LOF	ja	M = 1 bis N-1; N = 1 bis 8001
RDI	ia	M = 1 bis N-1; N = 1 bis 8001
UNEQ	ja	M = 1 bis N-1; N = 1 bis 8001
PLM	ja	M = 1 bis N-1; N = 1 bis 8001
TIM	ja	-

Tabelle TD-2 Einstellbare Alarmtypen (Defect)

4.3 Fehlereinblendung (Anomalien)

Auslösearten .	 	 	 		Einzelfehler	(Single)
				oder Fe	ehlerhäufigke	it (Rate)

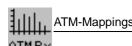
Fehlerart, Anomalie	Single	Rate	
FAS	ja	2E-3 bis 1E-8	
EM (BIP-8)	ja	2E-3 bis 1E-10	
REI	ja	2E-5 bis 1E-10	

Tabelle TD-3 Einstellbare Fehlerarten (Anomalien) mit Auslöseart

4.4 Fehlermessung (Anomalien)

Zusätzlich zu den Fehlertypen im Grundgerät können folgende Anomalien ausgewertet und angezeigt werden.

Defekt	LED
FAS	FAS
EM (BIP-8)	B1/B2
REI	-


Tabelle TD-4 LED-Anzeige der möglichen Defekte

4.5 Alarmerkennung (Defekte)

Zusätzlich zu den Fehlertypen im Grundgerät können folgende Defekte ausgewertet und angezeigt werden.

Defekt	LED
AIS	AIS
LOF	LOF/OOF
RDI	RDI
UNEQ	HP-UNEQ
PLM	HP-PLM
TIM	-

Tabelle TD-5 LED-Anzeige der möglichen Defekte

5 Mapping E3, ATM in 34,368 Mbit/s

Option 3035/90.74

- Rahmen nach G.832
- ATM Mapping nach G.804

5.1 Overhead

OH-Byte	Option 3035/90.74
FA1(hex)	"F6"
FA2 (hex)	"28"
EM (hex)	eingeblendet über Parity-Bildung
TR(ASCII)	"WG E3-TRACE
MA(hex)	"10"
NR (hex)	"00"
GC (hex)	"00"

Tabelle TD-6 Belegung des OH

5.2 Alarmerzeugung (Defekte)

Folgende Alarmtypen können folgende Defekte erzeugt werden:

Defekt	Test Sensor Funktion	Sensor Schwellen
	Ein/Aus	M in N
AIS	ja	-
LOF	ja	M = 1 bis N-1; N = 1 bis 8001
RDI	ia	M = 1 bis N-1; N = 1 bis 8001
UNEQ	ja	M = 1 bis N-1; N = 1 bis 8001
PLM	ja	M = 1 bis N-1; N = 1 bis 8001
TIM	ja	-

Tabelle TD-7 Einstellbare Alarmtypen (Defect)

5.3 Fehlereinblendung (Anomalien)

Auslösearten Einzelfehler (Single) oder Fehlerhäufigkeit (Rate)

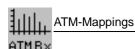
Fehlerart, Anomalie	Single	Rate
FAS	ja	2E-3 bis 1E-8
EM (BIP-8)	ja	2E-3 bis 1E-10
REI	ja	2E-4 bis 1E-10

Tabelle TD-8 Einstellbare Fehlerarten (Anomalien) mit Auslöseart

5.4 Fehlermessung (Anomalien)

Zusätzlich zu den Fehlertypen im Grundgerät können folgende Anomalien ausgewertet und angezeigt werden.

Defekt	LED
FAS	FAS
EM (BIP-8)	B1/B2
REI	-


Tabelle TD-9 LED-Anzeige der möglichen Defekte

5.5 Alarmerkennung (Defekte)

Zusätzlich zu den Fehlertypen im Grundgerät können folgende Defekte ausgewertet und angezeigt werden.

Defekt	LED
AIS	AIS
LOF	LOF/OOF
RDI	RDI
UNEQ	HP-UNEQ
PLM	HP-PLM
TIM	-

Tabelle TD-10 LED-Anzeige der möglichen Defekte

6 Mapping E1, ATM in 2,048 Mbit/s

Option 3035/90.75

• ATM-Mapping nach ITU-T G.804

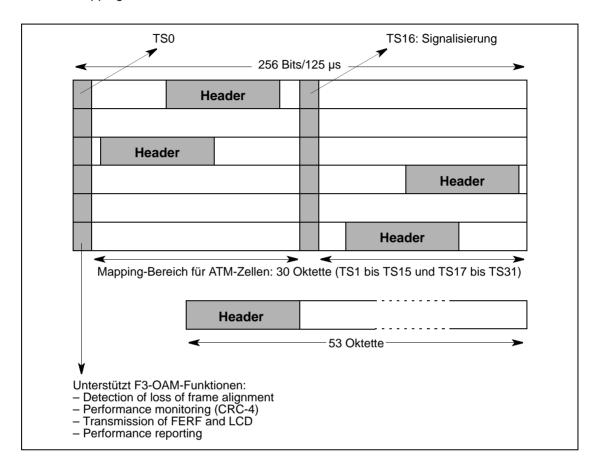


Bild TD-3 ATM-Mapping für E1 (2048 kbit/s)

Im Registerteil "STM-1-Mapping" finden Sie die technischen Daten zu folgenden Themen:

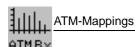
- Alarmerzeugung (Defekte)
- Fehlereinblendung (Anomalien)
- Fehlermessung (Anomalien)
- Alarmerkennung (Defekte)

7 Mapping DS3, ATM in 44,736 Mbit/s (PLCP, HEC based)

Option 3035/90.73

7.1 PLCP-based Mapping

Die ATM-Zellen werden nach G.804 zuerst in den PLCP-Rahmen (Physical Layer Convergence Protocol) gemappt. Der PLCP-Rahmen gleited bit-synchron (Nibble-aligned floating-4 bit) im DS3-C-Parity-Rahmen nach G.804 (G.704). Weitere Informationen finden Sie im Registerteil "STS-1-Mapping" (Kapitel "DS3-Mapping").


7.1.1 Overhead

DS3: PLCP based ATM Mapping

ОН						
	1	2	3 (POI)	4 (POH)	5	6
1	A1 F6	A2 28	P11 2C	Z6 00	ATM Cell	
2	A1 F6	A2 28	P10 29	Z5 00	ATM Cell	
3	A1 F6	A2 28	P09 25	Z4 00	ATM Cell	
4	A1 F6	A2 28	P08 20	Z3 00	ATM Cell	
5	A1 F6	A2 28	P0 1C	Z2 00	ATM Cell	
6	A1 F6	A2 28	P06 19	Z1 00	ATM Cell	
7	A1 F6	A2 28	P05 15	X 00	ATM Cell	
8	A1 F6	A2 28	P04 10	B1	ATM Cell	
9	A1 F6	A2 28	P03 0D	G1 00	ATM Cell	
10	A1 F6	A2 28	P02 08	X 00	ATM Cell	
11	A1 F6	A2 28	P01 04	X 00	ATM Cell	
12	A1 F6	A2 28	P00 01	C1	ATM Cell	Trailer C

Alle Werte hexadezimal.

B1 wird über POH und ATM Zelle der 12 Zeilen des vorhergehenden Rahmens gebildet.

7.1.2 Alarmerzeugung (Defekte)

Folgende Alarmtypen (Defekte) können erzeugt werden:

Defekt	Test Sensor Funktion	Sensor Schwellen
	Ein/Aus	M in N
AIS_DS3	ja	-
IDLE_DS3	ja	-
LOF_DS3	ja	-
YELLOW_DS3 (RDI)	ja	-
PLCP_LOF	ja	M = 1 bis N-1;
PLCP_RAI	ja	N = 1 bis 8000

Tabelle TD-11 Einstellbare Alarmtypen (Defect)

7.1.3 Fehlereinblendung (Anomalien)

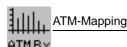
Fehlerart, Anomalie	Single	Rate
FE_DS3	ja	-
Parity_DS3	ja	-
FEBE_DS3	ja	-
PLCP_FAS	ja	1E-3 bis 1E-7
PLCP_B1	ja	1E-3 bis 1E-8
PLCP_REI(FEBE)	ja	1E-3 bis 1E-8

Tabelle TD-12 Einstellbare Fehlerarten (Anomalien) mit Auslöseart

7.1.4 Fehlermessung (Anomalien)

Zusätzlich zu den Fehlertypen im Grundgerät können folgende Anomalien ausgewertet und angezeigt werden.

Anomalie	LED
FE_DS3, MFE_DS3	FAS/CRC
P_DS3, CP_DS3	-
FEBE_DS3	-
PLCP_FAS	FAS/CRC
PLCP_B1	B1/B2
PLCP_REI (FEBE)	-


Tabelle TD-13 LED-Anzeige der möglichen Defekte

7.1.5 Alarmerkennung (Defekte)

Zusätzlich zu den Fehlertypen im Grundgerät können folgende Defekte ausgewertet und angezeigt werden.

Defekt	LED
AIS_DS3	AIS
LOF_DS3, OOF_DS3	LOF/LCD
YELLOW_DS3	RDI
IDLE_DS3	-
PLCP_LOF	LOF/LCD
PLCP_RAI	-

Tabelle TD-14 LED-Anzeige der möglichen Defekte

7.2 HEC-based Mapping

Für das HEC-based Mapping von ATM Zellen in 44,736 Mbit/s wird nach G.804 der Multirahmen (nach G.704) verwendet.

7.2.1 Alarmerzeugung (Defekte)

Defekt	Test Sensor Funktion
	Ein/Aus
AIS_DS3	ja
IDLE_DS3	ja
LOF_DS3	ja
YELLOW_DS3 (RDI)	ja

Tabelle TD-15 Alarmerzeugung (Defekte): Einstellbare Alarmtypen

7.2.2 Fehlereinblendung (Anomalien)

Fehlerart, Anomalie	Single
FE_DS3	ja
Parity_DS3	ja
FEBE_DS3	ja

Tabelle TD-16 Fehlereinblendung (Anomalien): Einstellbare Fehlerarten mit Auslöseart

7.2.3 Fehlermessung (Anomalien)

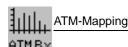

Anomalie	LED
FE_DS3, MFE_DS3	FAS/CRC
P_DS3, CP_DS3	-
FEBE_DS3	-

Tabelle TD-17 Fehlermessung (Anomalien): LED-Anzeige der möglichen Anomalien

7.2.4 Alarmerkennung (Defekte)

Defekt	LED
AIS	AIS
LOF_DS3, OOF_DS3	LOF/LCD
YELLOW_DS3	RDI
IDLE_DS3	-

Tabelle TD-18 Alarmerkennung (Defekte): LED-Anzeige der möglichen Defekte

8 Mapping DS1, ATM in 1,544 Mbit/s

Option 3035/90.76

8.1 Alarmerzeugung (Defekte)

Defekt	Test Sensor Funktion
	Ein/Aus
AIS_DS1	ja
LOF_DS1	ja
YELLOW_DS1	ja

Tabelle TD-19 Alarmerzeugung (Defekte): Einstellbare Defekte

8.2 Fehlereinblendung (Anomalien)

Auslösearten Einzelfehler (Single)

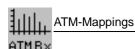
Fehlerart, Anomalie	Single
FE_DS1	ja
CRC6	ja

Tabelle TD-20 Fehlereinblendung (Anomalien): Einstellbare Anomalien mit Auslöseart

8.3 Fehlermessung (Anomalien)

Zusätzlich zu den Fehlertypen im Grundgerät können folgende Anomalien ausgewertet und angezeigt werden.

Anomaly	LED
FE_DS1	FAS/CRC
CRC6	FAS/CRC


Tabelle TD-21 Fehlermessung (Anomalien): LED-Anzeige der möglichen Anomalien

8.4 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmen im Grundgerät können folgende Defekte ausgewertet und angezeigt werden.

Defekt	LED
AIS_DS1	AIS
LOF_DS1, OOF_DS1	LOF/LCD
YELLOW_DS1	RDI

Tabelle TD-22 Alarmerkennung (Defekte): LED-Anzeige der möglichen Defekte

9 Mapping STM-1 C3, ATM in 155,52 Mbit/s

Option 3035/90.77

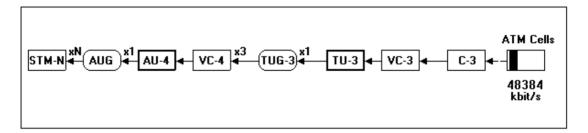


Bild TD-4 Mapping-Struktur AU-4: ATM \rightarrow C-3 \rightarrow AU-4 \rightarrow STM-1

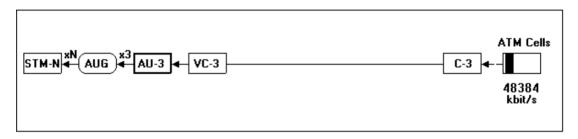


Bild TD-5 Mapping-Struktur AU-3: ATM \rightarrow C-3 \rightarrow AU-3 \rightarrow STM-1

Im Registerteil "STM-1-Mapping" finden Sie die technischen Daten zu folgenden Themen:

- Overhead
- Alarmerzeugung (Defekte)
- Fehlereinblendung (Anomalien)
- Auswertung des Overhead
- Fehlermessung (Anomalien)
- Alarmerkennung (Defekte)

10 Mapping STS-1 SPE, ATM in 44,736 Mbit/s

siehe Kap. 3, Seite TD-3 und Kap. 7, Seite TD-9

11 Mapping VC3, ATM in 44,736 Mbit/s

siehe Kap. 7, Seite TD-9 und Kap. 9, Seite TD-16

7

ANT-20SE Advanced Network Tester

Broadband Analyzer/Generator

BN 3060/90.51

Softwareversion 7.20

Technische Daten

Inhalt

Technische Daten Broadband Analyzer/Generator

1	Sendet	eil	TD-1
	1.1	Scrambling	TD-1
	1.2	Füllzellen	TD-1
	1.3	Zellkopf (Header)	TD-1
	1.4	Generelle Funktionen	TD-2
	1.4.1	Fehlereinblendung (Anomalien)	TD-2
	1.4.2	Alarmerzeugung (Defekte)	TD-2
	1.5	Funktionen bei ATM-Schicht Quality-of-Service Messungen	TD-3
	1.5.1	Generell	TD-3
	1.5.2	Fehlereinblendung (Anomalien)	TD-3
	1.5.3	Alarmerzeugung	TD-3
	1.5.4	Testzellformat	TD-3
	1.6	Quellmodelle	TD-4
	1.6.1	"Constant Bit Rate"-Modell	TD-4
	1.6.2	"On-Off"-Modell	TD-4
	1.7	Verkehrsformer (Traffic Shaper)	TD-5
	1.7.1	Verkehrsformer für CBR, UBR und DBR Verkehrsverträge	TD-5
	1.7.2	Verkehrsformer für VBR und SBR Verkehrsverträge	
2	Empfar	ngsteil	TD-7
	2.1	Descrambling	TD-7
	2.2	Generelle Funktionen	TD-7
	2.2.1	Fehlermessungen (Anomalien)	TD-7
	2.2.2	Alarmerkennung (Defekte)	TD-7
	2.2.3	Empfängerbandbreite	TD-7
	2.3	ATM-Schicht Quality-of-Service Messungen	TD-8
	2.3.1	Generelle Eigenschaften	TD-8
	2.3.2	Error Related Parameter	TD-8
	2.3.3	Delay Related Parameter	TD-8
	2.3.4	Alarmerkennung (Defekte)	
	2.3.5	Sonstige Parameter	TD-9

i

	2.4	Channel Explorer	TD-10
	2.4.1	Activity Scan	TD-10
	2.4.2	Trouble Scan	TD-10
	2.4.3	AAL Analyse	TD-11
3	Signalis	ierung	TD-12
	3.1	Verkehrsverträge ("Traffic Contracts")	TD-12
	3.2	Signalisierungsanalyse	TD-12

Technische Daten Broadband Analyzer/Generator

1 Sendeteil

1.1 Scrambling

Die Payload der Zellen ist nach ITU-T Empfehlung I.432 (X^{43} + 1) verscrambled. Der Scrambler ist abschaltbar.

1.2 Füllzellen

Der Füllzellentyp ist einstellbar. Es sind IDLE- oder UNASSIGNED-Zellen verwendbar.

1.3 Zellkopf (Header)

UNI/NNI Moduseinstellbar ¹
GFC einstellbar ²
VPI, VCI einstellbar ³
CI (congestion indicator)
CLP (cell loss priority)einstellbar ²
HEC wird automatisch gebildet

- 1 Bei SVC automatisch auf UNI eingestellt.
- 2 Bei PVC einstellbar. Bei SVC automatisch eingestellt (0 gesetzt).
- 3 Bei PVC einstellbar. Bei SVC automatisch eingestellt.

1.4 Generelle Funktionen

1.4.1 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlereinblendungen der physikalischen Schicht können folgende Anomalien eingeblendet werden. Diese Anomalien sind unabhängig von der aktiven Messart, sie beziehen sich auf den gesamten Zellstrom einschließlich der Füllzellen.

Fehlerart Anomalie	Single	Rate ¹	Sensor-Schwellen
			M in N
HEC uncor. ²	ja	1E-2 bis 1E-6	M=1 bis 31 N = M+1 bis M + 31
HEC cor. ³	ja	1E-2 bis 1E-6	M =1 bis 31 N = M +1 bis M + 31

- 1 Mantisse: nur 1, Exponent: -2 bis -6 (Ganzzahlen)
- 2 Nicht korrigierbarer Header-Fehler
- 3 Korrigierbarer Header-Fehler

Tabelle TD-1 Einstellbare Anomalien

1.4.2 Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmen der physikalischen Schicht können folgende Defekte erzeugt werden. Diese Defekte können unabhängig von der aktiven Messart erzeugt werden, sie beziehen sich auf den gesamten Zellstrom.

Defekt	Test Sensor-Funktionen	Single
	Ein/Aus	
LCD ¹	ja	ja

¹ LCD (Loss of Cell Delineation) wird durch nicht korrigierbare Header-Fehler in \geq 7 aufeinanderfolgenden Zellen erzeugt.

Tabelle TD-2 Einstellbare Defekte

1.5 Funktionen bei ATM-Schicht Quality-of-Service Messungen

1.5.1 Generell

Zahl der Testkanäle
Verkehrsformer ("Traffic Shaper") ¹
Maximale Gesamtbandbreite aller Testkanäle
1 Abschaltbar2 Praktisch ist die Obergrenze durch das physikalische Mapping gegeben.

1.5.2 Fehlereinblendung (Anomalien)

Folgende Anomalien können selektiv auf jedem der vier Testkanäle eingefügt werden. Alle Anomalien werden als einmaliges Ereignis ("single") eingefügt.

Nicht korrigierbarer Header-Fehler	HUNC
Korrigierbarer Header-Fehler	HCOR
Verlorene Zelle	Cell Loss
Fehlerhafte Zelle	Cell Error
Eingefügte Zelle	Cell Misins.
Fehlerhafter Zellblock	SECB

1.5.3 Alarmerzeugung

Folgende Defekte können kanalselektiv auf jedem der vier Testkanäle erzeugt werden. Alle Defekte werden als "Ein/Aus"-Funktionen erzeugt.

Alarm Indication Signal auf F5-Ebene (VC)	.VC-AIS
Alarm Indication Signal auf F4-Ebene (VP)	.VP-AIS
Remote Defect Indication auf F5-Ebene (VC)	VC-RDI
Remote Defect Indication auf F4-Ebene (VP)	VP-RDI

1.5.4 Testzellformat

Testzellformat in Übereinstimmung mit ITU-T Empfehlung O.191, Ausgabe vom 9. Januar 1997.

1 Die niederwertigen Bits des Zeitstempels sind immer auf 0 gesetzt

1.6 Quellmodelle

1.6.1 "Constant Bit Rate"-Modell

Erzeugt wird ein Zellstrom mit nominell konstantem Zellabstand.

Parameter	0 bis 366792 Cells/s ¹
Auflösung der Spitzenzellrate	1 cell/s
Maximal erzeugbarer Zell-Jitter ²	bhängig von der Spitzenzellrate und vom eingestellten Mapping
Jitterprofil	µs, ms

¹ Praktisch ist die Obergrenze durch das physikalische Mapping gegeben.

1.6.2 "On-Off"-Modell

Erzeugt wird ein burstartiger Zellstrom mit Ein/Aus - Charakter.

Parameter	"Peak Cell Rate", "Mean Cell Rate", "Burst Size" und "Cell Jitter"
Spitzenzellrate ("Peak Cell Rate")	
Auflösung der Spitzenzellrate	1 cell/s
Mittlere-Zellrate ("Mean Cell Rate")	

¹ Praktisch ist die Obergrenze durch das physikalische Mapping gegeben.

² Hierbei handelt es sich um den Jitter des Quellmodelles. Der Jitter des tatsächlichen Datenstromes setzt sich zusammen aus dem Jitter des Quellmodelles, dem Multiplexjitter sowie dem Eigenjitter des Senders. Der Eigenjitter des Senders ist hauptsächlich durch das Mapping bestimmt und ist somit stark von der physikalischen Zellrate abhängig.

³ Zellankunftszeiten sind über ein bestimmtes Zeitintervall verkürzt bis der eingegebene Jitterhub erreicht ist. Danach folgt eine Lücke im Zellstrom mit der die korrekte mittlere Zellrate hergestellt wird.

Auflösung der mittleren Zellrate	1 cell/s
Maximale Burst Länge ("Burst Size")	abhängig von der eingestellten mittleren Zellrate und der Spitzenzellrate
Einheiten für Burst Länge	•
Maximal erzeugbarer Zell-Jitter	abhängig von der Spitzenzellrate und vom eingestellten Mapping
Jitterprofil	μs, ms

¹ Zellankunftszeiten sind innerhalb der Burstdauer soweit verkürzt, daß der eingegebene Jitterhub erreicht ist.

1.7 Verkehrsformer (Traffic Shaper)

1.7.1 Verkehrsformer für CBR, UBR und DBR Verkehrsverträge

Algorithmus	kompatibel mit "Single Leaky Bucket"
Parameter	"Peak Cell Rate" und "CDVT _{PCR} " ¹
Bereich der "Peak Cell Rate"	
Einheiten für "Peak Cell Rate"	Cells/s, Mbit/s, kbit/s
Bereich der "CDVT _{PCR} "	0 bis 16,383 ms
Einheiten für "CDVT _{PCR} "	μs, ms

^{1 &}quot;Cell Delay Variation Tolerance" bezüglich der "Peak Cell Rate"

1.7.2 Verkehrsformer für VBR und SBR Verkehrsverträge

Algorithmus	kompatibel mit "Dual Leaky Bucket"
Parameter	Cell Rate", "Sustaineable Cell Rate", "Burst Tolerance", "CDVT _{SCR} " und "CDVT _{PCR} "
Bereich der "Peak Cell Rate". Einheiten für "Peak Cell Rate". Bereich der "Sustaineable Cell Rate". Einheiten für "Sustaineable Cell Rate". Bereich der "Burst Tolerance". Einheiten für "Burst Tolerance". Einheiten für "CDVT _{PCR} ". Einheiten für "CDVT _{PCR} ". Bereich der "CDVT _{SCR} ". Einheiten für "CDVT _{SCR} ".	

^{1 &}quot;Cell Delay Variation Tolerance" bezüglich der "Sustainable Cell Rate".

2 Empfangsteil

2.1 Descrambling

Das Descrambling erfolgt nach ITU-T Empfehlung I.432 (X^{43} + 1). Der Descrambler ist abschaltbar.

2.2 Generelle Funktionen

2.2.1 Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlern der physikalischen Schicht werden die folgende Anomalien ausgewertet und angezeigt. Diese Fehler werden über den gesamten Zellstrom erfaßt.

Anomalie	Count	Erläuterung
HEC Error Count correctable	Ja	Korrigierbarer Fehler im Zellkopf.
HEC Error Count uncorrectable	Ja	Nicht korrigierbarer Fehler im Zellkopf.

Tabelle TD-3 Anzeige der möglichen Anomalien

2.2.2 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmen der physikalischen Schicht werden die folgenden Defekte ausgewertet und angezeigt.

Defekt	LED	Defect Seconds Count ¹	Erläuterung
Loss of Cell Delineation	Software LEDs für History und aktuellen Status	Ja	Verlust der Zellsyn- chronisation.
Physical Layer Defect	Software LEDs für History und aktuellen Status	Ja	Summenalarm für Fehler der physikali- schen Schicht. Wird aktiviert wenn kein analysierbarer Zell- strom vorliegt.

¹ Eine "Defect Second" wird gezählt wenn das Fehlerereignis innerhalb eines 1-Sekunden Intervalles mindestens einmal auftritt.

Tabelle TD-4 Anzeige der möglichen Defekte

2.2.3 Empfängerbandbreite

Anzeige der Bandbreite aller virtuellen Kanäle der physikalischen Verbindung in MBit/s und Prozent. Der Prozentwert ist bezogen auf die theoretische physikalische Maximalbandbreite des eingestellten Mappings.

2.3 ATM-Schicht Quality-of-Service Messungen

2.3.1 Generelle Eigenschaften

Zahl der Messkanäle	
Maximale Bandbreite eines Messkanales	
Maximale Gesamtbandbreite aller Testkanäle	. 366792 Cells/s ¹

¹ Praktisch ist die Obergrenze durch das physikalische Mapping gegeben.

2.3.2 Error Related Parameter

Messalgorithmus in Übereinstimmung mit ITU-T Empfehlung O.191, Ausgabe vom 9. Januar 1997.

Folgende Parameter werden jeweils als Count und als Rate bzw. Ratio gemessen.

Verlorene ZelleCell LossFehlerhafte ZelleCell ErrorEingefügte ZelleCell MisinsFehlerhafter ZellblockSECB

Zusätzlich wird die Zahl der analysierten Zellen angegeben ("Analyzed Cell Count").

2.3.3 Delay Related Parameter

Laufzeitmessungen sind nur möglich wenn der Zellstrom des Senders auf den Empfänger zurückgeschleift wird, d.h. wenn das Gerät seinen eigenen Zellstrom wieder empfängt.

Kleinste aufgetretene Laufzeit	Min. CTD
Größte aufgetretene Laufzeit	Max. CTD
Mittlere Laufzeit	Mean CTD
2-Punkt Laufzeitschwankung	2-pt. CDV _{PP}

2.3.4 Alarmerkennung (Defekte)

Die folgenden Defekte werden pro Messkanal ausgewertet und angezeigt.

Defekt	LED	Defect Seconds Count ¹	Erläuterung
VC-AIS	Software LEDs für History und aktuellen Status	Ja	Alarm Indication Signal auf F5-Ebene (VC)
VP-AIS	Software LEDs für History und aktuellen Status	Ja	Alarm Indication Signal auf F4-Ebene (VP)
VC-RDI	Software LEDs für History und aktuellen Status	Ja	Remote Defect Indication Signal auf F5- Ebene (VC)
VP-RDI	Software LEDs für History und aktuellen Status	Ja	Remote Defect Indication Signal auf F4- Ebene (VP)

¹ Eine "Defect Second" wird gezählt wenn der Alarmzustand innerhalb eines 1-Sekunden Intervalles mindestens einmal auftritt.

Tabelle TD-5 Anzeige der möglichen Defekte

2.3.5 Sonstige Parameter

Die folgenden Parameter werden als "Defect Seconds" Count angegeben¹.

"Loss of Performance Assesment Capability"	
"Not Connected Seconds"	 . NCS ²

- 1 Eine "Defect Second" wird gezählt wenn der Zustand innerhalb eines 1-Sekunden Intervalles mindestens einmal auftritt.
- 2 Tritt nur bei SVC auf.

Der Zustand "Loss of Performance Assesment Capability" wird erkannt, wenn aufgrund schwerer Störungen im Zellstrom keine Messung der Error- und Delay-Related Parameter möglich ist.

Der Zustand "Not Connected" ist gültig wenn keine virtuelle Verbindung geschaltet ist.

2.4 Channel Explorer

2.4.1 Activity Scan

Automatische Erkennung von aktiven virtuellen Kanälen. Die Unterscheidung der Kanäle erfolgt nach VCI und VPI. Die Schnittstellentypen UNI und NNI sind wählbar.

Für jeden erkannten Kanal werden folgende Parameter gemessen:

 Mittlere Bandbreite
 AvBW² [Mbps]

 Aktuelle Bandbreite
 CuBW³ [Mbps]

 Anteil der Zellen mit gesetztem Congestion Indicator
 CI-BW⁴ [%]

 Anteil der Zellen mit gesetztem Cell Loss Priority Bit
 CLP1-BW⁵ [%]

Eine "Aging"-Funktion kann optional aktiviert werden. Durch diese Funktion werden alle Kanäle aus der Liste der aktiven Kanäle gelöscht, die für mindestens 30 Sekunden keine Aktivität gezeigt haben.

2.4.2 Trouble Scan

Automatische Erkennung von AIS- und RDI-Alarmen. Gleichzeitige Darstellung von Alarmen der F4-Ebene (virtual path) und der F5-Ebene (virtual channel). Die Schnittstellentypen UNI und NNI sind wählbar.

¹ Unsortiert bedeuted, daß die Kanäle in der zeitlichen Reihenfolge der Erkennung angezeigt werden.

² Die mittlere Bandbreite ist der Mittelwert über die verstrichene Zeit, seit der Kanal erkannt wurde.

³ Die aktuelle Bandbreite ist der Mittelwert über das letzte 10-Sekunden-Intervall.

⁴ Bezogen auf die mittlere Bandbreite

⁵ Bezogen auf die mittlere Bandbreite

2.4.3 AAL Analyse

Automatische Erkennung des AAL-Typs für alle im Activity Scan detektierten Kanäle.

Zusätzlich kann eine grafische Anzeige der AAL-Typ-Verteilung vorgenommen werden (Kuchendiagramm). Der Anteil des jeweiligen AAL-Typs wird in Prozent angegeben.

- 1 Undetected bedeutet, daß der AAL-Typ nicht bestimmt werden kann (z.B. bei unbekanntem AAL-Typ oder bei stark gestörtem Zellstrom).
- 2 Unchecked bedeutet, daß der AAL-Typ des betreffenden Kanals nicht geprüft wurde (z.B. weil die Analyse vorzeitig durch den Benutzer abgebrochen wurde).

3 Signalisierung

Die Signalisierungsfunktionalität eines Endgerätes an der Teilnehmer/Netz-Schnittstelle (UNI) wird emuliert. Es können maximal vier Verbindungen gleichzeitig geschaltet werden.

Optional kann "Channel associated Signaling" gewählt werden 1. Subadressen können optional verwendet werden.

NSAP DCC,

NSAP E.164, NSAP E.191

3.1 Verkehrsverträge ("Traffic Contracts")

Verkehrsklassen	. "CBR", "DBR", "UBR", "VBR-RT", "VBR-nRT", "SBR"
Quality of Service Klassen	
Verbindungsart	
Direktionalität	
	"Bi-directional asymetric"

¹ CBR: "Constant Bit Rate", DBR: "Deterministic Bit Rate", UBR: "Unspecified Bit Rate", VBR-RT: "Variable Bit Rate - Real Time", VBR-nRT: "Variable Bit Rate - none Real Time", SBR: "Statistical Bit Rate".
CBR, UBR, VBR-RT un VBR-nRT sind Verkehrsklassen ("Traffic Types") nach ATM-Forum. SBR und DBR sind "Bearer Capabilities" nach ITU.

3.2 Signalisierungsanalyse

¹ Nur möglich wenn das Protokol nach ITU-T Empfehlung Q. 2931 eingestellt ist.

ANT-20SE Advanced Network Tester

Concatenated Mappings OC-12c/STM-4c OC-48c/STM-16c

BN 3060/90.55 bis 3060/90.58

Softwareversion 7.20

Technische Daten

Inhalt

Technische Daten OC-12c/STM-4c

1	Sendete	211	I D-1
	1.1	Digitalsignal-Ausgang	TD-1
	1.1.1	Signalausgang [18], optisch	TD-1
	1.2	Takterzeugung und Bitraten	TD-2
	1.2.1	Takterzeugung	TD-2
	1.2.2	Bitrate	TD-2
	1.3	SDH- und SONET-Sendesignale	TD-2
	1.3.1	OC-12c/STM-4c-Sendesignal	TD-2
	1.3.2	Scrambling	TD-2
	1.3.3	Overhead-Erzeugung	TD-3
	1.3.3.1	Section Overhead (SOH), Transport Overhead (TOH).	TD-3
	1.3.4	VC-4c Path Overhead (POH), High Order	TD-4
	1.3.4.1	Contiguous Concatenation (VC-4-4c)	TD-4
	1.3.4.2	Virtual Concatenation (VC-4-4v)	TD-5
	1.3.5	Erzeugen von Pointeraktionen	TD-5
	1.3.5.1	Contiguous Concatenation	TD-5
	1.3.5.2	Virtual Concatenation	TD-6
	1.3.6	OC-12c/STM-4c-Fehlereinblendung (Anomalien)	TD-7
	1.3.7	OC-12c/STM-4c-Alarmerzeugung (Defekte)	TD-9
	1.4	Payload-Erzeugung	TD-10
	1.4.1	"BULK" Generator	TD-10
	1.4.1.1	Payload	TD-10
	1.4.1.2	Bitmuster	TD-10
	1.4.1.3	Fehlereinblendung (Anomalien)	TD-10
	1.4.2	ATM-Sendeteil	TD-11
	1.4.2.1	Scrambling	TD-11
	1.4.2.2	Fehlereinblendung (Anomalien)	TD-11
	1.4.2.3	Alarmerzeugung (Defekte)	TD-12
	1.4.2.4	Testkanal	TD-12
	1.4.2.5	Hintergrundlast	TD-13
	1.4.2.6	Füllzellen	TD-13
	1.4.2.7	AAL-1-Segmentation	TD-13

2	Empfan	gsteil	TD-14
	2.1	Digitalsignal-Eingänge	TD-14
	2.1.1	Signaleingang [17], optisch	TD-14
	2.1.2	Signaleingang [16], elektrisch	TD-15
	2.1.3	Taktrückgewinnung	TD-15
	2.2	SDH- und SONET-Empfangssignale	TD-15
	2.2.1	OC-12c/STM-4c-Empfangssignal	TD-15
	2.2.2	Descrambling	TD-15
	2.3	Meßarten	TD-16
	2.3.1	Auswertung des Section Overhead (SOH), Transport Overhead (TOH)	TD-16
	2.3.2	Auswertung des Path Overhead (POH)	TD-16
	2.3.2.1	Contiguous Concatenation	TD-16
	2.3.2.2	Virtual Concatenation	TD-17
	2.3.3	Messung von AU-Pointeraktionen	TD-17
	2.3.4	Fehlermessungen (Anomalien)	TD-18
	2.3.5	Alarmerkennung (Defekte)	TD-19
	2.4	Payload	TD-21
	2.4.1	BULK-Empfänger	TD-21
	2.4.1.1	Payload an Bitmustern	TD-21
	2.4.1.2	Fehlermessungen (Anomalien)	TD-21
	2.4.1.3	Alarmerkennung (Defekte)	TD-21
	2.4.2	ATM-Empfangsteil	TD-21
	2.4.2.1	Descrambling	TD-21
	2.4.3	Meßarten	TD-22
	2.4.3.1	Fehlermessung (Anomalien)	TD-22
	2.4.3.2	Alarmerkennung (Defekte)	TD-22
	2.4.3.3	ATM-Performance-Messungen	TD-23
	2.4.4	Nutzkanalanalyse und Lastmessung	TD-23
	2441	AAI -1 Reassembly	TD-25

Technische Daten OC-48c/STM-16c

1	Sendete	eil	TD-27
	1.1	Digitalsignal-Ausgang	TD-27
	1.1.1	Signalausgang [47], optisch	TD-27
	1.1.2	Signalausgang [46], elektrisch	TD-28
	1.2	Takterzeugung und Bitraten	TD-28
	1.2.1	Takterzeugung intern	TD-28
	1.2.2	Takterzeugung extern [45]	TD-28
	1.2.3	Bitrate	TD-28
	1.3	SDH- und SONET-Sendesignale	TD-29
	1.3.1	OC-48c/STM-16c-Sendesignal	TD-29
	1.3.2	Scrambling	TD-29
	1.3.3	Overhead-Erzeugung	TD-30
	1.3.3.1	Section Overhead (SOH), Transport Overhead (TOH).	TD-30
	1.3.4	Path Overhead (POH), High Order	TD-32
	1.3.4.1	Contiguous Concatenation	TD-32
	1.3.5	Erzeugen von Pointeraktionen	TD-33
	1.3.5.1	Contiguous Concatenation	TD-33
	1.3.6	OC-48c/STM-16c-Fehlereinblendung (Anomalien)	TD-33
	1.3.7	OC-48c/STM-16c-Alarmerzeugung (Defekte)	TD-34
	1.4	Payload-Erzeugung	TD-35
	1.4.1	"BULK" Generator	TD-35
	1.4.1.1	Payload	TD-35
	1.4.1.2	Bitmuster	TD-35
	1.4.1.3	Fehlereinblendung (Anomalien)	TD-35
	1.4.2	ATM-Sendeteil für STS-12c SPE/VC-4-4c-Container	TD-36
	1.4.2.1	Scrambling	TD-36
	1.4.2.2	Fehlereinblendung (Anomalien)	TD-36
	1.4.2.3	Alarmerzeugung (Defekte)	TD-37
	1.4.2.4	Testkanal	TD-37
	1.4.2.5	Hintergrundlast	TD-38
	1.4.2.6	Füllzellen	TD-38
	1.4.2.7	AAI -1-Segmentation	TD-38

2	Empfan	ngsteil	. TD-39
	2.1	Digitalsignal-Eingänge	. TD-39
	2.1.1	Signaleingang [44], optisch	. TD-39
	2.1.2	Signaleingang [43], elektrisch	. TD-40
	2.1.3	Taktausgang [42]	. TD-40
	2.1.4	Taktrückgewinnung	. TD-40
	2.2	SDH- und SONET-Empfangssignale	. TD-41
	2.2.1	OC-48c/STM-16c-Empfangssignal	. TD-41
	2.2.2	Descrambling	. TD-41
	2.3	Meßarten	. TD-41
	2.3.1	Auswertung des Section Overhead (SOH), Transport Overhead (TOH)	. TD-41
	2.3.2	Auswertung des Path Overhead (POH)	. TD-42
	2.3.2.1	Contiguous Concatenation	. TD-42
	2.3.3	Messung von AU-Pointeraktionen	. TD-43
	2.3.4	Fehlermessungen (Anomalien)	. TD-44
	2.3.5	Alarmerkennung (Defekte)	. TD-45
	2.4	Payload	. TD-46
	2.4.1	BULK-Empfänger	. TD-46
	2.4.1.1	Payload an Bitmustern	. TD-46
	2.4.1.2	Fehlermessungen (Anomalien)	. TD-46
	2.4.1.3	Alarmerkennung (Defekte)	. TD-46
	2.4.2	ATM-Empfangsteil	. TD-46
	2.4.2.1	Descrambling	. TD-46
	2.4.3	Meßarten	. TD-47
	2.4.3.1	Fehlermessung (Anomalien)	. TD-47
	2.4.3.2	Alarmerkennung (Defekte)	. TD-47
	2.4.3.3	ATM-Performance-Messungen	. TD-48
	2.4.4	Nutzkanalanalyse und Lastmessung	. TD-48
	2.4.4.1	AAL-1 Reassembly	. TD-50

Technische Daten OC-12c/STM-4c

Diese technischen Daten umfassen die Optionen:

OC-12c/STM-4c-Mappings

OC-12c/STM-4c ERROR TEST (BULK)	.BN 3035/90.90
OC-12c/STM-4c ATM TESTING	.BN 3035/90.91
OC-12v/STM-4v VIRTUAL CONCATENATION	.BN 3035/90.92

Die in eckigen Klammern [...] geführten Zahlen bei den Meßanschlüssen entsprechen den Zahlen, die am Gerät aufgedruckt sind.

Kalibrierte Kenndaten sind mit *** markiert.

1 Sendeteil

1.1 Digitalsignal-Ausgang

1.1.1 Signalausgang [18], optisch

Anschluß
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbinder
Sendepegel ***
Verminderung des Sendepegels bei Ausführung "2 Wellenlängen"
Pulsform des Sendesignals nach ITU-T G.957
Wellenlänge (umschaltbar, optionsabhängig)
Laserklasse nach EN 60825-1:1994

Der Sender erfüllt die Bedingungen der ITU-T-G.957-Klassen L1.1, L1.2, L1.3, L4.1, L4.2, L4.3. Die Klassen S1.1, S1.2 sowie S4.1 und S4.2 können durch Vorschalten eines optischen Abschwächers oder durch Zwischenschalten des optischen Power Splitters BN 3035/90.49 erreicht werden.

Statusanzeige "LASER ON"

LED leuchtet, wenn der Lasersender aktiv ist.

1.2 Takterzeugung und Bitraten

1.2.1 Takterzeugung

siehe "Technische Daten" des Grundgeräts

1.2.2 Bitrate

1.3 SDH- und SONET-Sendesignale

- Erzeugung eines OC-12c-Signals entsprechend dem GR-253-Bellcore-Standard.
- Erzeugung eines STM-4c-Signals entsprechend den ITU-T-Empfehlungen G.707.

1.3.1 OC-12c/STM-4c-Sendesignal

Bildung des OC-12c/STM-4c-Signals:

- Signal intern erzeugt, Payload enthält "Bulk" oder ATM-Zellen
- Signal komplett vom Empfänger

1.3.2 Scrambling

Das Scrambling erfolgt nach der ITU-T-Empfehlung G.707. Der Scrambler kann aus- oder eingeschaltet werden.

1.3.3 Overhead-Erzeugung

1.3.3.1 Section Overhead (SOH), Transport Overhead (TOH)

Standard-Overhead OC-12c/STM-4c (hex)

																	s o	Н, Т	ОН																	
1			A1 F6		A2 28	A2 28	A2 28	A2 28	A2 28	A2 28	A2 28		A2 28		A2 28	A2 28		Z0 C1 AA		Z0 C1 AA	— AA	 AA	 AA	— AA	AA	_ AA	 AA	 AA								
2	B1 XX	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00		E1 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	F1 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00
3	D1 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00		D2 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	D3 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00
4a	H1 68	Y 9B	Y 9B	Y 9B	Y 9B	Y 9B	Y 9B	Y 9B	Y 9B	Y 9B	Y 9B	Y 9B	H2 00	 FF	 FF	 FF	 FF	 FF	 FF	 FF	 FF	 FF	 FF	 FF	H3 00		l		H3 00	l		-	H3 00	H3 00	-	H3 00
4b	H1 68		H1 68		Y 9B		H2 00		H2 00	H2 00	 FF	 FF	 FF	 FF	 FF	 FF	 FF	_	НЗ	H3 00		H3 00	H3 00				H3 00	H3 00		H3 00						
4c	H1 60	Y 93	Y 93	Y 93	Y 93	Y 93	Y 93	Y 93	Y 93	Y 93	Y 93	Y 93	H2 00	 FF	 FF	 FF	— FF	 FF	 FF	 FF	 FF	— FF	 FF	 FF			l		H3 00	l			H3 00	H3 00		H3 00
4d	H1 60		H1 60	H1 60	Y 93	Y 93	H2 00	l	H2 00	H2 00	 FF	 FF	 FF	 FF	 FF	 FF	 FF	 FF		H3 00			H3 00	l			H3 00									
5			B2 XX					B2 XX		B2 XX	B2 XX		K1 00	 00	 00	_	— 00	 00	—	—	 00	— 00	_	—	K2	 00	 00	— 00	—	 00	— 00	 00	 00	— 00	 00	— 00
6	D4 00	_	 00	—	-	-	-	—	—	— 00	— 00	_	D5 00	-	 00	— 00	— 00	 00	_	_	_	_	— 00		D6	_	 00	— 00	— 00	 00	— 00	 00	 00	— 00	— 00	— 00
7	D7 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00		D8 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	D9 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00	— 00
8	D1 0 00	 00	 00	 00	 00	 00	 00	 00	 00	 00	 00	 00	D1 1 00	 00	 00	 00	 00	 00	— 00	 00	 00	 00	 00	— 00	D1 2 00	 00	 00	 00	 00	 00	 00	00	 00	— 00	_ 00	 00
9	S1 00		Z1 00	Z1 00		l			Z1 00	Z1 00			Z2 00		M1 00		Z2 00						Z2 00			— 00	 00	— 00	 00	— 00	 00	— 00	 00	— 00	 00	— 00

Tabelle TD-1 Belegung des SOH, TOH; OC-12c/STM-4c

XX: Eingeblendet über Parity-Bildung (B1, B2)

Zeile 4a: SDH-Pointer (VC-4-4c)

Zeile 4b: SDH-Pointer (VC-4-4v)

Zeile 4c: SONET-Pointer (STS-12c)

Zeile 4d: SONET-Pointer (STS-12v)

H1 und H2 sind abhängig von der eingestellten Pointer-Adresse (dargestellt Pointer-Adresse = 0), H3 davon, ob eine Pointer-Aktion stattfindet.

Belegung der SOH-Bytes

Statisches Byte: alle außer B1, B2, H1, H2, H3
Overhead Sequenz m, n, p: alle außer B1, B2, H1, H2, H3

• Trace Identifier: J0 (Länge = 16 Rahmen mit CRC7-Bildung)

• Dynamisch mit einer

Quasi-Zufallsfolge PRBS11: E1, F1, E2 (Einzel-Byte)

• Dynamisch mit einer

Quasi-Zufallsfolge PRBS11: D1 bis D3, D4 bis D12 (Byte-Gruppe)

Dynamisch über

DCC/ECC-Schnittstelle, Bu [21] (V.11): E1, F1, E2 (Einzel-Byte)

Dynamisch über

DCC/ECC-Schnittstelle, Bu [21] (V.11): D1 bis D3, D4 bis D12, K1 bis K2 (Byte-Gruppe)

1.3.4 VC-4c Path Overhead (POH), High Order

1.3.4.1 Contiguous Concatenation (VC-4-4c)

Standard Overhead

POH-Byte	POH #1	POH #2 bis #4 fest gestopft (drei Spalten)
J1 (ASCII)	"WG HP-TRACE"	"00"
B3 (hex)	Eingeblendet über Parity-Bildung	"00"
C2 (hex)	"13" für ATM-Mapping "FE" für BULK (STM-4) "01" für BULK (OC-12)	"00"
G1 (hex)	"00"	"00"
F2 (hex)	"00"	"00"
H4 (hex)	"FF"	"00"
F3 (hex)	"00"	"00"
K3 (hex)	"00"	"00"
N1 (hex)	"00"	"00"

Tabelle TD-2 Belegung des POH

Belegung der Bytes des VC-4-4c POH

- Statisches Byte: alle außer B3, H4
- Overhead Sequenz m, n, p: alle außer B3, H4
- Trace Identifier: J1 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS11: F2 (Byte)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): F2, K3, N1 (Byte)
- H4-Sequenz, schaltbar, 4/48 Bytes

1.3.4.2 Virtual Concatenation (VC-4-4v)

nur mit Option BN 3035/90.92

Standard Overhead

POH-Byte	POH #1	POH #2 bis #4
J1 (ASCII)	"WG HP-TRACE"	"00"
B3 (hex)	Eingeblendet über Parity-	-Bildung
C2 (hex)	"13" bei ATM-Mappings "FE" für BULK (STM-4) "01" für BULK (OC-12)	"13" bei ATM-Mappings "FE" für BULK (STM-4) "01" für BULK (OC-12)
G1 (hex)	"00"	"00"
F2 (hex)	"00"	"00"
H4 (hex)	"FF"	
F3 (hex)	"00"	"00"
K3 (hex)	"00"	"00"
N1 (hex)	"00"	"00"

Tabelle TD-3 Belegung des POH

Belegung der Bytes des VC-4-4v POH #1

- Statisches Byte: alle außer B3, H4
- Overhead Sequenz m, n, p: alle außer B3, H4
- Trace Identifier: J1 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS11: F2 (Byte)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): F2, K3, N1 (Byte)
- H4-Sequenz, schaltbar, 4/48 Bytes

Belegung der Bytes des VC-4-4v POH #2 bis #4

- Statisches Byte: alle außer B3, H4
- Alle Bytes wie POH #1, außer B3

1.3.5 Erzeugen von Pointeraktionen

1.3.5.1 Contiguous Concatenation

Stimulation

AU-4-Pointersequenzen

Siehe Technische Daten "STM-1-Mappings" bzw. "STS-1-Mappings".

Pointersprünge

Pointersprung vom Pointerwert A auf Pointerwert B (auch Setzen eines neuen Pointers).

Die Pointersprünge werden mit NDF ausgeführt.

Pointerbereich A + B:

1.3.5.2 Virtual Concatenation

nur mit Option BN 3035/90.92

Stimulation Pointer #1

AU-4-Pointersequenzen

Siehe Technische Daten "STM-1-Mappings" bzw. "STS-1-Mappings".

Pointersprünge

Pointersprung vom Pointerwert A auf Pointerwert B (auch Setzen eines neuen Pointers).

Die Pointersprünge werden mit NDF ausgeführt.

Pointerbereich A + B:

Stimulation Pointer #2 bis #4

Die Pointeraktionen im Pointer #1 wirken gleichzeitig auf die Pointer #2 bis #4.

Zusätzlich kann für jeden Pointer #2 bis #4 ein Delta (Abweichung) zu Pointer #1 erzeugt werden.

Das Setzen eines neuen Delta-Wertes erfolgt über n x Inkrement bzw. n x Dekrement.

Für n > 1 beträgt der Abstand zwischen zwei aufeinanderfolgenden Inkrement-/Dekrement-Aktionen 32 Rahmen (4 ms).

Bei Pointer-Aktionen in Pointer #1 bleibt das Delta der Pointer #2 bis #4 erhalten.

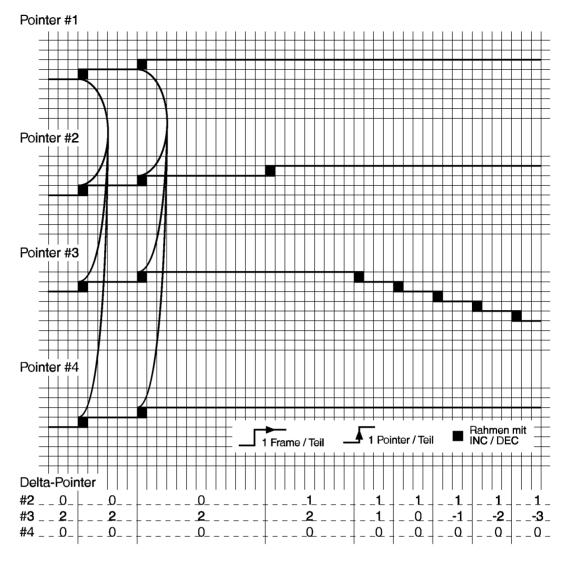


Bild TD-1 Pointeraktionen

1.3.6 OC-12c/STM-4c-Fehlereinblendung (Anomalien)

Bei der Auslöseart Fehlerhäufigkeit (Rate) wird eine Bitfehlerrate eingeblendet.

Anomalie	Single	Rate ¹
B1 (OC-12c, STM-4c)	ja	2E-4 bis 1E-10
B2 (OC-12c, STM-4c)	ja	2E-3 bis 1E-10
REI-L (OC-12c) MS-REI (STM-4c)	ja	2E-3 bis 1E-10
B3 ² (STS-12c SPE/VC-4-4c)	ja	2E-4 bis 1E-10
REI-P (STS-12c SPE) ³ HP-REI (VC-4-4c)	ja	2E-4 bis 1E-10

¹ Mantisse: 1 bis 9, Exponent: -1 bis -10 (Ganzzahl)

Tabelle TD-4 Einstellbare Anomalien (OC-12c, STM-4c) und Triggerarten

Die Einblendung von **Fehlern** (Anomalien) und **Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

² Virtual Concatenation: Single: POH #1; Rate: alle vier POHs

³ Virtual Concatenation: Einfügung in POH #1

1.3.7 OC-12c/STM-4c-Alarmerzeugung (Defekte)

Defekt	Test Sensor- Funktion	Test Sensor-Schwellen					
-	Ein/Aus	M in N	t1 t2				
LOS (optisch)	ja	M = 800 bis 7200 N = 1600 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
LOF-622	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
TIM-L (OC-12c) RS-TIM (STM-4c)	ja	-	-				
AIS-L (OC-12c) MS-AIS (STM-4c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
RDI-L (OC-12c) MS-RDI (STM-4c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
LOP_P (STS-12c SPE) AU-LOP (VC-4-4c) ¹	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
LOP-Cx ²	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
AIS-P (STS-12c SPE) AU-AIS (VC-4-4c) ¹	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
AIS-Cx ²	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
UNEQ-P (STS-12c SPE) HP-UNEQ (VC-4-4c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
PLM-P (STS-12c SPE) HP-PLM (VC-4-4c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
RDI-P (STS-12c SPE) HP-RDI (VC-4-4c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s				
TIM-P (STS-12c SPE) HP-TIM (VC-4-4c)	ja	-	-				

¹ Einblendung in alle vier Pointer (AU-4)

Tabelle TD-5 Einstellbare Defekte

Die Einblendung von **Alarmen** (Defekte) und **Fehlern** (Anomalien) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

² X = 1 bis 4; Einblendung nur in den ausgewählten Pointer (AU-4)

1.4 Payload-Erzeugung

1.4.1 "BULK" Generator

nur mit Option BN 3035/90.90

1.4.1.1 Payload

1.4.1.2

Bitrate
Struktur ungerahmt
Bitmuster
Digitalwort

1.4.1.3 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.3.6, Seite TD-7 beschrieben werden, kann folgende Anomalie eingeblendet werden:

Anomalie	Single	Rate ¹					
TSE	ja	1E-2 bis 1E-9					
1 Mantisse: 1, Exponent -2 bis -9 (Ganzzahl)							

Tabelle TD-6 Zusätzlich einstellbare Anomalie (OC-12c, STM-4c)

Fehlereinblendung (Anomalie)	Bitfehler im Testmuster (TSE)
Auslöseart	Einzelfehler (Single) oder Fehlerhäufigkeit (Rate)

Die Einblendung von **Fehlern** (Anomalien) und **Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

1.4.2 ATM-Sendeteil

nur mit Option BN 3035/90.70 (ATM-Modul) und BN 3035/90.91

1.4.2.1 Scrambling

Das Scrambling erfolgt nach der ITU-T-Empfehlung I.432 (X⁴³+1). Die Funktion ist abschaltbar.

1.4.2.2 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.3.6, Seite TD-7 beschrieben werden, können folgende Anomalien eingeblendet werden.

Fehlerart Anomalie	Single	Rate ¹	Sensor-Schwellen				
			M in N				
HEC uncor. ²	ja	1E-2 bis 1E-6	M = 1 bis 31 N = M + 1 bis M + 31				
HEC cor. ³	ja	1E-2 bis 1E-6	M = 1 bis 31 N = M + 1 bis M + 31				
AAL-1 Cell loss	ja	1E-3 bis 1E-6	-				
AAL-1 CRC	ja	1E-3 bis 1E-6	-				
AAL-1 PE	ja	1E-3 bis 1E-6	-				

- 1 Mantisse: nur 1, Exponent: -1 bis -6 (Ganzzahl)
- 2 nicht korrigierbare Headerfehler
- 3 korrigierbare Headerfehler

Tabelle TD-7 Zusätzlich einstellbare Fehlerarten (Anomalien)

Die Fehler AAL-1 Cell loss, AAL-1-CRC und AAL-1-PE beziehen sich auf den Meßkanal. Fehler im Testmuster (TSE) werden in die ATM-Payload bzw. in die AAL-1-Payload des Testkanals eingeblendet.

Korrigierbare und nicht korrigierbare Headerfehler werden in den Gesamtzellenstrom eingeblendet.

1.4.2.3 Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in Kap. 1.3.7, Seite TD-9 beschrieben sind, können folgende Defekte erzeugt werden.

Defekt	Test Sensor-Funktion	Single
	Ein/Aus	
LCD ¹	ja	ja
VP-AIS	ja	ja
VP-RDI	ja	ja
VC-AIS ²	ja	ja
VC-RDI ³	ja	ja
Vx-AIS ⁴	ja	ja
Vx-RDI ⁴	ja	ja

¹ LCD (Loss of Cell Delineation) wird durch nicht korrigierbare Headerfehler in ≥ 7 aufeinanderfolgenden Zellen erzeugt.

Tabelle TD-8 Zusätzlich instellbare Alarmtypen (Defekte)

1.4.2.4 Testkanal

Zellen

Header

UNI/NNI, VCI, VPI, PT und CLP	
Payload	
Quasizufallsfolgen	

Lastprofile

Constant, Equidistant, Burst

Lastprofil Constant

Auflösung: abhängig von eingestelltem Lastbereich	
14,976 bis 1482,624 kbit/s	.14,976 kbit/s
149,76 bis 14826,24 kbit/s	.149,76 kbit/s
1497,6 bis 149760 kbit/s	.1497.6 kbit/s

² AIS: Alarm Indication Signal; VC: Virtual Channel; VP: Virtual Path

³ RDI: Remote Defect Indication

⁴ Bei Vx-AIS bzw. Vx-RDI werden die Alarme in VP und VC parallel eingeblendet.

Concatenation

Einstellbereich Equidistant

Maximale Abweichung des Zellabstands	.±1 Zellzeit
Auflösung: abhängig von eingestelltem Zellabstandsbereich	
4 bis 400	. 4 Zellzeiten
40 bis 4000	40 Zellzeiten
400 bis 40 000	00 Zellzeiten

Zellabstand......4 bis 40000 Zellzeiten

Einstellbereich Burst

Maximale Burstlänge	1497,6 bis 149760 kbit/s
Maximale Burstperiode	131 068 Zellen/89 ms
Einheiten für Last	•

1.4.2.5 Hintergrundlast

Als Hintergrundlast wird ein Kanal erzeugt. Der Vordergrundverkehr (Testkanal) hat Priorität.
Header frei einstellbar
Payload byteweise konstant, Byte frei einstellbar
Lastprofil
Konstante Bitrate (CBR)449280 kbit/s
Auffüllung bis

1.4.2.6 Füllzellen

Der Zellstrom wird mit IDLE-Zellen oder UNASSIGNED-Zellen aufgefüllt. Die Funktion ist umschaltbar.

1.4.2.7 AAL-1-Segmentation

Im Testkanal können in der AAL-1-PDU Signale mit den Systembandbreiten 1,5 Mbit/s, 2 Mbit/s, ... gesendet werden.

Mögliche Payloadmuster bei 2 Mbit/s	PRBS unframed,
	PRBS in PCM30,
	PRBS in PCM30CRC

2 Empfangsteil

2.1 Digitalsignal-Eingänge

2.1.1 Signaleingang [17], optisch

schluß	mm (PC)
eßadapter "Faser-Faser" zum Direktanschluß rschiedender 2,5-mm-Steckverbinder siehe Zuk	oehörliste
ngangsempfindlichkeit C-12c/STM-4c ***	-28 dBm
ax. zulässiger Eingangspegel	.+2 dBm
ellenlänge1100 bis	1580 nm
er Empfänger erfüllt die Bedingungen der ITU-T-G.957-Klassen S1.1, S1.2, S4.1, S .3.	4.2 und

Jitterverträglichkeit

gemessen mit verscrambelten SDH- oder SONET-Signalen:

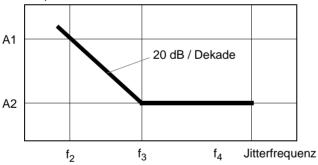


Bild TD-2 Jitteramplitude in Abhängigkeit von der Jitterfrequenz

Bitrate Mbit/s	A1 Ulpp	f ₂ kHz	A2 Ulpp	f ₃ kHz	f ₄ kHz
51,840	1,5	2	0,15	20	500
155,520	1,5	6,5	0,15	65	1300
622,080	1,5	25	0,15	250	5000

Tabelle TD-9 Jitterverträglichkeit des ANT-20SE bei Systembitraten

2.1.2 Signaleingang [16], elektrisch

Ar	schluß unsymmetrisch (koax	tial)
Вι	chseS	MA
Inr	enwiderstand des Signaleingangs5	Ω Ο
Co	deNRZ (verscramb	elt)
Eiı	gangsspannungsbereich200 mVpp bis 1\	/pp
Bit	ate	oit/s

Jitterverträglichkeit

siehe Tab. TD-9, Seite TD-14

Statusanzeige "LOS" (Loss of signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

2.1.3 Taktrückgewinnung

siehe "Technische Daten" des Grundgeräts

2.2 SDH- und SONET-Empfangssignale

- Auswertung eines OC-12c-Signals entsprechend dem GR-253-Bellcore-Standard.
- Auswertung eines STM-4c-Signals entsprechend den ITU-T-Empfehlungen G.707.

2.2.1 OC-12c/STM-4c-Empfangssignal

Auswertung des OC-12c/STM-4c-Signals:

- Analyse des Transport Overhead (TOH)/Section Overhead (SOH), des Path Overhead (POH) und der Payload (BULK) direkt oder in Zusammenarbeit mit dem ATM-Modul (Option BN 3035/90.70).
- Analyse des Transport Overhead (TOH)/Section Overhead (SOH) und Durchschleifen des OC-12c/STM-4c-Signals zum Sender (D&C)

2.2.2 Descrambling

Das Descrambling erfolgt nach der ITU-T-Empfehlung G.707. Der Descrambler kann ein- oder ausgeschaltet werden.

Tip: Bei unverscrambelten Eingangssignalen ist darauf zu achten, daß keine langen "Null"-oder "Eins"-Folgen im Datenstrom enthalten sind.

2.3 Meßarten

2.3.1 Auswertung des Section Overhead (SOH), Transport Overhead (TOH)

Anzeige

des kompletten SOH, TOH: (vier kanalbezogene Teil-SOH)	hexadezimal
des Trace Identifier J0 (STS-12c SPE/VC-4-4c)	ASCII, Klartext
Overhead Capture	siehe Registerteil 1 "Extended Overhead Analysis" Option BN 3035/90.15

Auswertung

Bitfehlermessung

mit Quasi-Zufallsfolge PRBS11	E1, F1, E2 (Einzel-Byte)
mit Quasi-Zufallsfolge PRBS11	. D1 bis D3, D4 bis D12 (Byte-Gruppe)

Ausgabe

Die Ausgabe der Overhead-Kanäle erfolgt über die

DCC/ECC-Schnittstelle, Bu [21] (V.11) D1 bis D3, D4 bis D12, K1 bis K2 (Byte-Gruppe)

2.3.2 Auswertung des Path Overhead (POH)

2.3.2.1 Contiguous Concatenation

Anzeige

des kompletten POH	exadezimal
des Trace Identifier J1ASG	CII, Klartext

Auswertung

Bitfehlermessung
mit Quasi-Zufallsfolge PRBS11
Ausgabe
Die Ausgabe der Overhead-Kanäle erfolgt über die
DCC/ECC-Schnittstelle, Bu [21] (V.11)

2.3.2.2 Virtual Concatenation

Anzeige

Auswertung

Bitfehlermessung

Ausgabe

Die Ausgabe der Overhead-Kanäle erfolgt über die

2.3.3 Messung von AU-Pointeraktionen

Auswertung

Der AU-Pointer (Virtual Concatenation: Pointer #1) wird als absoluter Wert dargestellt. Die Pointerbewegung wird nach ihrer Richtung erfaßt und gezählt.

NDF (New Data Flag) wird erfaßt und gezählt (Virtual Concatenation: Pointer #1).

Das Delta der Pointerwerte der Pointer #2 bis #4 in Bezug zum Pointer #1 werden festgestellt und aufgezeichnet (Virtual Concatenation).

Maximales Delta..... ± 40 Pointer/± 6,17 μs

Anzeige

- Anzahl der Pointeroperationen für AU-Pointer (Virtual Concatenation: Pointer #1): Inkrement, Dekrement, Summe Inkrement + Dekrement, Differenz Inkrement - Dekrement
- Pointeradresse (Virtual Concatenation: Pointer #1)
- Anzahl der NDF-Ereignisse (Virtual Concatenation: Pointer #1)
- Korrespondierende Taktabweichung (Virtual Concatenation: Pointer #1)
- Das Delta der Pointerwerte der Pointer #2 bis #4 in Bezug zum Pointer #1 (Virtual Concatenation)
- AU-NDF bzw. NDF-P können mit der LED-Anzeige (Frontplatte) angezeigt werden (Application Manager - Menü "Configuration" - LED Display ...):
 - die LED "AU-LOP/LOP-P" zeigt zusätzlich zur Meldung "AU-LOP" die Meldung "AU-NDF" bzw. zusätzlich zur Meldung "LOP-P" die Meldung "NDF-P" an

Absolute Pointerwerte, Inkrement, Dekrement, Summe Inkrement + Dekrement und NDF (Virtual Concatenation: Pointer #1) werden in grafischer Histogramm-Darstellung mit einer wählbaren Auflösung von Sekunde, Minute, Stunde oder Tag angezeigt.

Das Delta der Pointerwerte der Pointer #2 bis #4 in Bezug zum Pointer #1 werden in Anzahl der Pointer und in Zeit (µs) angegeben (Virtual Concatenation).

Ausdruck

Absolute Pointerwerte, Inkrement, Dekrement, Summe Inkrement + Dekrement, NDF und Delta Pointer (Virtual Concatenation) werden mit einer Auflösung von 1 Sekunde in tabellarischer Form ausgedruckt.

2.3.4 Fehlermessungen (Anomalien)

Auswertung

Alle Fehler (Anomalien) werden parallel gezählt und gespeichert.	
Gatezeiten	1 bis 99 Sekunden oder 1 bis 99 Minuten oder 1 bis 99 Stunden oder 1 bis 99 Tage
Zwischenergebnisse	1 bis 99 Sekunden oder 1 bis 99 Minuten

Anzeige

der Anomalien über LEDs:

CURRENT LED (rot) leuchtet, während die Anomalie anliegt.

HISTORY LED (gelb) leuchtet, wenn die Anomalie mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Anomalie	LED
OOF-622	LOF/OOF
B1 (OC-12c/STM-4c)	B1/B2
B2 (OC-12c/STM-4c)	B1/B2
REI-L (OC-12c) MS-REI (STM-4c)	-
B3 (STS-12c SPE/VC-4-4c)	B3
REI-P (OC-12c) HP-REI (STM-4c)	-

Tabelle TD-10 LED-Anzeige der möglichen Anomalien

Auswertung und Anzeige der B2-Fehler bezieht sich auf den verketteten Datenstrom (BIP-96).

Auswertung und Anzeige der B3-Fehler:

Contiguous Concatenation: BIP-8

Virtual Concatenation: BIP-32

2.3.5 Alarmerkennung (Defekte)

Auswertung

Alle anliegenden Alarme (Defekte) werden soweit wie möglich parallel ausgewertet und gespeichert. Die Speicherung erfolgt nur während eines gestarteten Meßintervalls

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Defekt	LED
LOS (optisch)	LOS
LOF-622	LOF/OOF
TIM-L (OC-12c) RS-TIM (STM-4c)	-
AIS-L (OC-12c) MS-AIS (STM-4c)	MS-AIS/AIS-L
RDI-L (OC-12c) MS-RDI (STM-4c)	MS-RDI/RDI-L
LOP-P (STS-12c SPE) AU-LOP (VC-4-4c)	AU-LOP/LOP-P
LOP-Cx ¹	AU-LOP/LOP-P
AIS-P (STS-12c SPE) AU-AIS (VC-4-4c)	AU-AIS/AIS-P
AIS-Cx ²	AU-AIS/AIS-P AU-LOP/LOP-P
DPOVC ³	AU-LOP/LOP-P
UNEQ-P (STS-12c SPE) HP-UNEQ (VC-4-4c) ⁴	HP-UNEQ/UNEQ-P
PLM-P (STS-12c SPE) HP-PLM (VC-4-4c)	HP-PLM/PLM-P
RDI-P (STS-12c SPE) HP-RDI (VC-4-4c)	HP-RDI/RDI-P
TIM-P (STS-12c SPE) HP-TIM (VC-4-4c)	-

¹ AU-LOP wird angezeigt, wenn in mindestens einem AU-4-Pointer ein LOP erkannt wird.

Tabelle TD-11 LED-Anzeige der möglichen Defekte

² AU-AIS wird angezeigt, wenn in allen vier AU-4-Pointern ein AIS erkannt wird. Wird AU-AIS in ein, zwei oder drei AU-4-Pointern erkannt, so wird AU-LOP-LOP-P angezeigt.

³ Virtual Concatenation: DPOVC (Delta Pointer Overflow Virtual Concatenation; Delta >± 40) Der Alarm wird angezeigt, wenn das maximale Delta einer der Pointer #2 bis #4 gegeüber dem Pointer #1 überschritten ist.

⁴ Virtual Concatenation: HP-UNEQ/UNEQ-P wird angezeigt, wenn in mindestens einem der vier VC-4-Containern HP-UNEQ/UNEQ-P erkannt wird.

2.4 Payload

2.4.1 BULK-Empfänger

nur mit Option BN 3035/90.90

2.4.1.1 Payload an Bitmustern

siehe Kap. 1.4.1.1, Seite TD-10 und Kap. 1.4.1.2, Seite TD-10

2.4.1.2 Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 2.3.4, Seite TD-18 beschrieben werden, kann folgende Anomalie ausgewertet und angezeigt werden:

Anomalie	LED
TSE	TSE

Tabelle TD-12 LED-Anzeigen der zusätzlichen Anomalie

2.4.1.3 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 2.3.5, Seite TD-19 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
LSS	LSS

Tabelle TD-13 LED-Anzeigen für zusätzliche Defekte

2.4.2 ATM-Empfangsteil

nur mit Option BN 3035/90.70 und BN 3035/90.91

2.4.2.1 Descrambling

Das Descrambling erfolgt nach der ITU-T-Empfehlung I.432 (X⁴³+1). Die Funktion ist abschaltbar.

2.4.3 Meßarten

2.4.3.1 Fehlermessung (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 2.3.4, Seite TD-18 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden.

Anomalie	LED	Erläuterung	
HCOR	-	Correctable Header Error	
HUNC	-	Uncorrectable Header Error	
CER	-	Cell Error Ratio	
CLR	-	Cell Loss Ratio	Bei Messungen mit
CMR	-	Cell Misinsertion Rate	Testzellen
AAL-1-CRC	-	AAL1 CRC Error	
AAL-1-PE	-	AAL1 Parity Error	bei AAL-1 Messungen
AAL-1-CLR	-	AAL1 Cell Loss Ratio	Moderngon
AAL-1-CMR	-	AAL1 Cell Misinsertion Rate	

Tabelle TD-14 Anzeige und Auswertung von Anomalien

Die Fehler HUNC, HCOR beziehen sich auf den kompletten Zellstrom, alle anderen Fehler hingegen auf den Meßkanal.

2.4.3.2 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 2.3.5, Seite TD-19 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden.

Defekt	LED	Erläuterung	
LCD	LOF/LCD	Loss of Frame/Loss of Cell Delineation	
OCR	LOF/LCD	Overflow Cell Rate ¹	
OCLR	-	Cell Loss Overflow ²	bei Messungen
OCMR	-	Cell Misinserted Overflow ³	mit Testzellen
VC-AIS	-	Virtual Channel Alarm Indication Signal	
VC-RDI	-	Virtual Channel Remote Defect Indication	
VP-AIS	-	Virtual Path Alarm Indication Signal	
VP-RDI	-	Virtual Path Remote Defect Indication	
AAL-1-OOS	-	AAL1 Out of Sync	

¹ Testkanal: maximale Zellrate (CBR) = 149760 kbit/s; maximal aufeinanderfolgende Zellen bei 599040 kbit/s = 400

Tabelle TD-15 LED-Anzeigen der zusätzlichen Alarme

² Mehr als 255 Zellverluste in 100 ms oder relativ zur letzten Testzelle

³ Mehr als 255 falsch eingefügte Zellen in 100 ms oder relativ zur letzten Testzelle

2.4.3.3 ATM-Performance-Messungen

Error Related Performance Parameter

Die Messung erfolgt mit Testzellen.

Meßergebnisse

Lost Cell Count, Cell Loss Ratio	CLR
Misinserted Cell Count, Cell Misinserted Rate	CMR
Error Cell Count. Cell Error Ratio	CER

Cell Transfer Delay

Die Zellaufzeitmessung erfolgt mit Testzellen.

AnzeigeHäufigkeitsverteilung
Auflösung
Meßbereich
Meßbereichsoffset
Einheit

Zellen mit Laufzeiten außerhalb des Meßbereichs werden in Klasse 0 (underflow) oder Klasse 127 (overflow) gezählt.

Cell Delay Variation

Die Zellaufzeitabweichung wird mit Testzellen gemessen.

Die Ergebnisse sind nur gültig, wenn keine Laufzeiten außerhalb des Meßbereichs erkannt wurden.

2.4.4 Nutzkanalanalyse und Lastmessung

Zellenfilter (VCI, VPI, CLP) zur Extraktion des Testkanals.

Die VCI- und CLP-Filter sind abschaltbar.

Durchschnittszellrate

Die Messung erfolgt parallel über alle Verbindungen und gleichzeitig im Testkanal.

leßintervall	3
uflösung	ó

Lastanzeige

Einheit
Skalierunglinear, logarithmisch

Spitzenzellrate

Die Messung erfolgt im Testkanal.

Neßintervall	 1 s
Auflösung	 0,1%

Lastanzeige

Einheit	Mbit/s, Cells/s, %
Skalierung	linear, logarithmisch

Kanalauslastungshistogramm

Das Kanalauslastungshistogramm zeigt die Verteilung von 100-ms-Meßintervallen nach gemessener Last

Meßintervalle
Anzahl der Klassen
Klasse "0" enthält die Anzahl der 100-ms-Meßintervalle, in denen 0% Last gemessen wurde.
Klassenbreite1%
Lastanzeige Mbit/s, Cells/s, %

Zellverteilung im Nutzkanal

Darstellung der Zellen im Nutzkanal klassifiert nach Nutzzellen, OAM-Zellen und Nutzzellen mit markierter CLP.

leßintervalle
nzeige

Testkanal

Testzellenformat

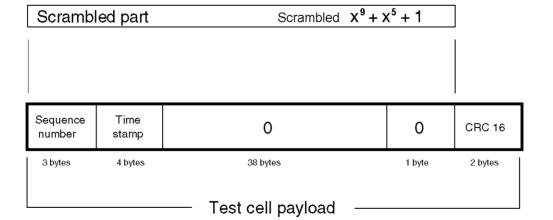
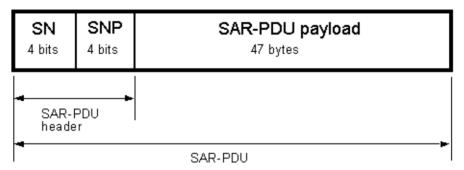


Bild TD-3 Testzellenformat nach ITU-T O.191 (Draft 4/95)


Concatenation

2.4.4.1 AAL-1 Reassembly

Das Reassembling von AAL-1-strukturierten Zellen erfolgt aus der SAR-PDU; das Format ist im Bild unten ersichtlich. Die Fehlermessung "TSE" wird mit gerahmten oder ungerahmten Quasizufallsfolgen (PRBS) durchgeführt, die in der SAR-PDU-Payload gemappt wurden.

Für Fehlermessungen stehen folgende Payloadmuster zur Verfügung:

- PRBS ungerahmt
- PRBS in PCM-30-Rahmen
- PRBS in PCM-30-Rahmen (CRC-codiert)

SN: Sequence Number SNP: Sequence Number Protection PDU: Protocol Data Unit

SAR: Segmentation and Reassembly

Bild TD-4 SAR-PDU-Format für AAL-1-Zellen

Notizen:

Technische Daten OC-48c/STM-16c

Diese technischen Daten umfassen die Optionen:

OC-48c/STM-16c-Mappings

OC-12c/STM-4c ERROR TEST (BULK)	BN 3035/90.91
Zusätzlich ist eine der folgenden Optionen erforderlich:	
STM-16/OC-48 (1550 nm)	

Die in eckigen Klammern [...] geführten Zahlen bei den Meßanschlüssen entsprechen den Zahlen, die am Gerät aufgedruckt sind.

Kalibrierte Kenndaten sind mit *** markiert.

1 Sendeteil

1.1 Digitalsignal-Ausgang

1.1.1 Signalausgang [47], optisch

Anschluß
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbinder
Sendepegel ***
Pulsform des Sendesignals
Wellenlänge (umschaltbar, optionsabhängig)
Laserklasse nach EN 60825-1:1994, Normalbetrieb

Der Sender erfüllt die Bedingungen der ITU-T-G.957-Klassen S16.2, L16.2, L16.3, bzw. S16.1,

Statusanzeige "LASER ON"

LED leuchtet, wenn der Lasersender aktiv ist.

L16.1.

1.1.2 Signalausgang [46], elektrisch

Anschluß
BuchseSN
Innenwiderstand des Signalausgangs50
Code NRZ (verscrambe
Ausgangsspannung ≥ 500 mV _I
Bitrate

1.2 Takterzeugung und Bitraten

1.2.1 Takterzeugung intern

1.2.2 Takterzeugung extern [45]

Für die Einspeisung eines mit Jitter modulierten Taktes, der vom Takt des Basismoduls abgeleitet sein muß.

1.2.3 Bitrate

Concatenation

1.3 SDH- und SONET-Sendesignale

- Erzeugung eines OC-48c-Signals entsprechend dem GR-253-Bellcore-Standard.
- Erzeugung eines STM-16c-Signals entsprechend den ITU-T-Empfehlungen G.707.

1.3.1 OC-48c/STM-16c-Sendesignal

Bildung des OC-48c/STM-16c-Signals:

- intern erzeugtes Signal: aus 4 x STS-12c SPE/VC-4-4c, die Payload enthält ein "Bulk"-Signal oder ATM-Zellen.
- intern erzeugtes Signal: die Payload eines STS-12c SPE/VC-4-4c-Signals enthält ein "Bulk"-Signal oder ATM-Zellen, die anderen drei STS-12c SPE/VC-4-4c-Signale sind mit HP-UNEQ belegt
- intern erzeugtes Signal: die Payload des STS-48c SPE/VC-4-16c-Signals enthält ein "Bulk"-Signal
- · Signal komplett vom Empfänger

1.3.2 Scrambling

Das Scrambling erfolgt nach der ITU-T-Empfehlung G.707. Der Scrambler kann nicht ausgeschaltet werden.

1.3.3 Overhead-Erzeugung

1.3.3.1 Section Overhead (SOH), Transport Overhead (TOH)

Section Overhead STM-16, OC-48

siehe Tab. TD-16, Seite TD-31

Die Einstellungen sind im gesamten SOH, TOH möglich. Davon sind die Bytes B1, B2 sowie die komplette Pointerzeile (H1, H2, H3) ausgenommen.

XX: Eingeblendet über Parity-Bildung (B1, B2)

Zeile 4a: SDH-Pointer (AU-4)

Zeile 4b: SDH-Pointer (AU-3)

Zeile 4c: SONET-Pointer (STS-1 SPE)

Zeile 4d: SONET-Pointer (STS-3c)

Zeile 4e: SDH-Pointer (AU-4, VC-4-4c)

Zeile 4f: SONET-Pointer (STS-12c SPE)

Zeile 4g: SDH-Pointer (AU-4, VC-4-16c)

Zeile 4h: SONET-Pointer (STS-48c SPE)

Zeile 9: Die Bezeichnungen Z1 und Z2 werden nur bei SONET verwendet.

H1 und H2 sind abhängig von der eingestellten Pointer-Adresse (dargestellt Pointer-Adresse = 0), H3 davon, ob eine Pointer-Aktion stattfindet.

Belegung der Overhead-Bytes

Statisches Byte: alle außer B1, B2, H1, H2, H3

Overhead Sequenz m, n, p: alle außer B1, B2, H1, H2, H3

• Trace Identifier: J0 (Länge = 16 Rahmen mit CRC7-Bildung)

Dynamisch mit einer Quasi-Zufallsfolge

PRBS11:

E1, F1, E2

D1 bis D3, D4 bis D12 (Byte-Gruppe)

Dynamisch über DCC/ECC-Schnittstelle

Bu [40] (V.11):

E1, F1, E2 (Einzel-Byte)

• Dynamisch über DCC/ECC-Schnittstelle

Bu [40] (V.11):

D1 bis D3, D4 bis D12, K1 bis K2

(Byte-Gruppe)

	#16	; 4	: 00	: 00	E 00	E 00	E 00	E 00	E 00	E 00	8 G	00 00	: 00	: 00	: 00	: 8	: 00
	*	- AA	- 00	- 00	원 8	원 8	원 왕	平 8 平 8	원 왕	위 위 의	원 왕	원 8	- 00	- 00	1 8	1 8	1 00
	#	- A	- 00	00	유 8	유 8	유 8	유 8	유 8	유 8	유 8	유 8		00	1 8	1 8	- 00
	:	AA AA	- 00	- 00	H3 H3 00	H3 H3	H3 H3	H3 H3	H3 H3	H3 00	H3 H3	H3 H3	00 00	- 00	- 00	- 00	- 00
	#16 #1	5.5 A	- 00	0 00	平 0 平 8	平 0 平 0	平 0 平 0	平 0 平 0	平 0 平 0	포 0 또 0	平 0 平 0	平 0 平 0	0 00	0 00	0 00	- 00	- 0
	5	32F	- 8	1 8	원 8	日 日 8	H3 00	H 00	平 8 8	원 왕	H2 00	원 8	1 8	1 8	18	1 8	: 00
	#14 #1	828	- 00	: 00	E 00	E 00	H3 00	H3 00	£ 00	H 00	9 H3	00 H3	: 8	: 8	: 8	: 00	: 00
	#13 #	828	- 00	- 00	원 8	£ 8	9 H	£ 00	유 8	우 8	유 8	우 8	- 00	- 00	: 8	: 8	: 00
	#12 #	528	- 00	- 00	원8	우 8	원 8	원 8	운 8	우 8	원8	우 8	00	- 00	: 8	1 8	: 8
	#11#	958 858	: 00	: 00	8 H3	0 H3	H3 00	9 H3	8 13	유 8	H3 00	9 H3	: 00	: 00	: 8	: 00	: 00
	#10 #	958	- 8	: 8	9 원	유 유	유 유	유 유	9 유	운용	8 옆	운 8	: 8	: 8	18	18	1 8
	6#	5 0 0 0	: 00	00	H 00	H 00	H3 00	H3 00	8 9 8	H3 00	H3 00	H3 00	00	00	: 00	: 00	: 00
	#	02 L 08 C 10 L	: 00	: 00	8 00 00	8 H3	3 H3	3 H3	8 00 00	3 H3	3 H3	3 H3	: 00	: 00	: 8	: 00	: 00
	2# 9#	JO JO C1 C1 06 07	00 00	00 00	H3 H3 00 00	нз нз 00 00	нз нз 00 00	H3 H3 00 00	H3 H3 00 00	H3 H3 00 00	H3 H3 00 00	нз нз 00 00	00 00	00 00	00 00	00 00	00 00
	#2#	05 0	0 00	000	EH 00	H 00	H3 00	H 00	E 00	£00	H3 00	H3 00	0 00	000	- 00	- 00	00
	#4	당 5 5	- 00	00	H3 00	H 00	H3 00	H3 00	H 00	H3 00	H3 00	H3 00	00	00	: 00	: 00	: 00
	#3	928	: 00	: 00	8 H 9	8 H 9	3 H3	3 H3	8 H 9	8 H 9	8 H3	8 H3	: 00	: 00	: 8	: 8	: 00
	#2	07 1 C1	00	3	3 H3	3 H3	3 H3	3 H3	3 H3	3 H3	3 H3	3 H3	2	9	- 00	2 00	- 00
	#	2 C1 01	- F1 0 00	00 00 0 00	- H3	2 H3 0 00	2 0 0 0	F H3	- H3	F 0	F 00	- H3	8.62	00 0	00 0	- D12 0 00	2 E2 0 00
	#1	A2 A2 28 28	00	00 00	: 11	H2 H2 00 00	H2 H2 00 00	-: -:	: 11	: 11	: E	: 11	00 00	00 00	00 00	00 00	Z2 Z2 00 00
	:	28 2	00	- 00	1 11	H2 00	H2 00	: 12	1 11	1 11	: 12	: #	- 00	- 00	: 00	: 00	22 2
	#1	A2 28			14	H2 00	H2 00	14	: 15	: 15	: 15	: 12			: 00	: 00	Z2 00
	#16	A2 28	- 00		8 12	8 ₽	9 유	9 년	- 11	: 12		<u></u>			- 00	: 8	8 22
	#15	A2 28	: 00	: 00	H2 00	9 H2	H2 00	H2 00	: 15	: 11	: E	: 12	: 00	: 00	: 8	: 00	22 00
	#14	A2 28	- 00		8 12	H2 00	H2 00	H2 00	-	-	<u>.</u>	FF	00		- 8	1 8	22
	#13	A2 28	- 00		요 단	9 8 8	H2 00	원 8	요 단	보 8	 FF	<u></u>			: 8	1 8	22
ᆼ	1 #12	78 78	00	: 00	0 H2	9 H	00 H2	9 H	1 12	1 15	1 16	: 世	: 00	: 00	: 8	: 00	8 22
зон, тон	111	A2 28	- 00	- 00	원 8	H 8	무 0	무 8	1 111	1 11	- 11	1 111	- 00	- 00	- 00	- 8	8 22
SOI	9 #10	2 A2 3 28	- 00	- 00	2 H2	2 H2	2 H2	2 H2	- E	2 FF	: 11	: 世	00	- 00	: 0	: 8	2 22
	6# 8#	A2 A2 28 28	- 00	00 00	00 HZ 00 00	H2 H2	H2 H2	H2 H2	- H2	- 1	: H	- H	00 00	- 00	- 00	- 00	Z2 Z2 00 00
	# 2#	A2 /	- 00	- 00	월 8	¥ 8	H 0	H 8	1 11	1 111	: 15	1 111	- 00	- 00	1 8	1 8	22 00
	9#	A2 28	- 00	- 00	8 12	8 4	8 4	8 4	1 11	1 15	- 14	1 11	- 00	- 00	- 8	1 8	22
	4 #5	2 A2 8 28	- 00	00 00	2 0 0 1 0 0	9 F	2 0 0 0 0	0 F2 0 0 F2	- H2	- 1	- FF FF	- FF FF	- 00	- 00	1 00	1 8	2 Z2 0 00
	#3 #4	A2 A2 28 28	0 00	0 00	00 FZ	H2 H2	H2 H2	H2 H2	1 111	1 11	 FF F	- H	00 00	0 00	- 00	- 00	M1 Z2 00 00
	#5	A2 28	- 00	00	8 12	H2 00	H2 00	H2 00	1 11	1 11	44 	 FF	00	00	18	1 8	22
	#1	A2 28	E1 00	D2 00	H2 00	H2 00	H2 00	H2 00	H2 00	H2 00	H2 00	H2 00	K1 00	00 00	D8 00	D11 00	22 00
	:	A1 F6	: 00	: 00	> 8	H 68	H 60	> 68	> 8	> 6	> 8	> 6	XX XX	: 00	: 8	: 8	Z1 00
	#	A1 A1 F6 F6	00	00 00	> 88 9B	H1 H1 68 68	H1 H1 60 60	Y Y 93 93	> B8 →	× ×	> 88 9B	Y Y 93 93	B2 B2 XX XX	00 00	00 00	00 00	Z1 Z1 00 00
	#	A1 A	00 00	00	> 8 > 8	H1 68 68	H1 60 6	× 6 83	> 8 > 8	> 6	> 86	7 6 8 6 9 3	B2 XX	00	- 00	- 00	Z1 Z 00 00
	#16	A1 F6	: 8	1 8	도 %	五 88	두 8	E 8	> 8	> 8	> B	≻ 8	× BS	1 8	: 8	18	Z1 00
	#15	A1 F6	00	00	H 68	H1 68	H1 60	H1 60	> 8	≻ 6	≻ 8	93	B2 XX	00	: 00	: 00	Z1 00
	#14	A1 F6	- 00	: 8	H 88	H 68	H 60	H 60	≻ ⁸ 0	> 8	≻ ⁸ 0	> 8	XX XX	: 8	18	18	Z1 00
	#13	A1 F6	00	- 00	표 89	F 89	H 09	표 %	五 88	H 80	> 8	> 8	B2 XX	- 00	- 00	: 00	Z1 00
	#12	A1 F6		00	H1 68	H1 68	H1 60	H1 60	> 8	≻ 83	≻ 88	93	B2 XX	00			Z1 00
	#11	A1 F6	: 8	: 8	E 88	H 68	H 09	H 09	≻ ⁶ 8	> %	≻ ⁶⁰	> 8	X X	: 8	: 8	18	21 00
	#10	A1 F6	- 00	- 8	H 88	E 88	H 00	£ 8	> 8	> %	> 8 3	> 8	X X	- 8	- 8	1 8	Z1 00
	6# 8#	A1 A1 F6 F6	- 00	: 00	H1 H1 68 68	H1 H1 68 68	H1 H1 60 60	H1 H1 60 60	→ H1 9B 68	7 H1 93 60	> 8 9B 9B	93 93	B2 B2 XX XX	: 00	100	- 00	Z1 Z1 00 00
	#	A1 A F6 F	- 00	- 00	H 68	H H 68 6	H1 60 60	H 60	≻ B	> 8	≻ 98 98	∀ 93 93	B2 XX	- 00	- 00	- 00	Z1 Z 00 00
	9#	A1 /	- 00	1 00	E 88	H 88	H 99	E 8	> 8 8	> 8	> ⁶⁰	> 8	XX X	1 00	1 8	1 8	Z1 00
	1 #5	1 A1 5 F6	- 00	00	1 H1 3 68	1 H1 3 68	1 H1 0 60	1 H1 0 60	H 3 68	H1 3 60	. ≺ 3 9B	3 93	2 B2 X XX	00	- 00	- 00	1 Z1 0 00
	#3 #4	A1 A1 F6 F6	- 00	: 00	H1 H1 68 68	H1 H1 68 68	H1 H1 60 60	H1 H1 60 60	> B 8 →	× × 83	> 8 8 →	93 93	B2 B2 XX XX	: 00	100	- 00	Z1 Z1 00 00
	#5	A1 A F6 F	0 00	0 00	H1 68 68	H1 H 68 6	H1 H 60 6	H1 60 60	> 8 8	> 8	> 6 86 9B	> 6	B2 B XX X	0 00	- 0	- 0	Z1 Z 00 00
	#	A1 /	₩×	00	E 88	H 68	H 60	H 99	£ 88	E 8	H 89	H 09	XX E	00	00	00 (S1 00
	вон	-	2	က	4a	4b	4c	4d	4e	44	49	4h	2	9	7	8	6
	٠,																

Tabelle TD-16 Belegung des SOH, TOH; STM-16, OC-48

1.3.4 Path Overhead (POH), High Order

1.3.4.1 Contiguous Concatenation

Standard Overhead

POH-Byte	РОН	"Fixed Stuff" Spalte #2 bis #4 Container: STS-12c SPE/VC-4-4c fest gestopft (drei Spalten)	"Fixed Stuff" Spalte #2 bis #16 Container: STS-48c SPE/VC-4-16c fest gestopft (15 Spalten)
		rest gestopit (drei opaiteri)	rest gestopit (13 opaiteri)
J1 (ASCII)	"WG HP-TRACE"	"00"	"00"
B3 (hex)	Eingeblendet über Parity-Bildung	"00"	"00"
C2 (hex)	"13" für ATM-Mapping "FE" für BULK (STM-4) "01" für BULK (OC-12)	"00"	"00"
G1 (hex)	"00"	"00"	"00"
F2 (hex)	"00"	"00"	"00"
H4 (hex)	"FF"	"00"	"00"
F3 (hex)	"00"	"00"	"00"
K3 (hex)	"00"	"00"	"00"
N1 (hex)	"00"	"00"	"00"

Tabelle TD-17 Belegung des POH

Belegung der Bytes des VC-4c POH #1

- Statisches Byte: alle außer B3, H4
- Overhead Sequenz m, n, p: alle außer B3, H4
- Trace Identifier: J1 (Länge = 16 Rahmen mit CRC7-Bildung)
- Dynamisch mit einer Quasi-Zufallsfolge PRBS11: F2 (Byte)
- Dynamisch über DCC/ECC-Schnittstelle (V.11): F2, K3, N1 (Byte)
- H4-Sequenz, schaltbar, 4/48 Bytes

1.3.5 Erzeugen von Pointeraktionen

1.3.5.1 Contiguous Concatenation

Stimulation

AU-4-Pointersequenzen

Siehe Technische Daten "STM-1-Mappings" bzw. "STS-1-Mappings".

Pointersprünge

Pointersprung vom Pointerwert A auf Pointerwert B (auch Setzen eines neuen Pointers).

Die Pointersprünge werden mit NDF ausgeführt.

Pointerbereich A + B:

1.3.6 OC-48c/STM-16c-Fehlereinblendung (Anomalien)

Fehlereinblendung (Anomalie)	B1, B2, B3 Paritätsfehler REI-L/MS-REI, REI-P/HP-REI
Auslösearten	Einzelfehler (Single) oder Fehlerhäufigkeit (Rate)

Bei der Auslöseart Fehlerhäufigkeit (Rate) wird eine Bitfehlerrate eingeblendet.

	1	1	1			
Anomalie	Single	Rate ¹	Burst m, n (Rahmen)			
B1 (OC-48c/STM-16c)	ja	2E-5 bis 1E-10	m = 1 bis 196000			
B2 (OC-48c/STM-16c)	ja	2E-3 bis 1E-10	m = 1 bis 196000			
REI-L (OC-48c) MS-REI (STM-16c)	ja	2E-3 bis 1E-10	m = 1 bis 196000			
B3 (STS-12c SPE/VC-4-4c)	ja	2E-4 bis 1E-10	m = 1 bis 196000			
B3 (STS-48c SPE/VC-4-16c)	ja	2E-5 bis 1E-10	m = 1 bis 196000			
REI-P (STS-12c SPE) HP-REI (VC-4-4c)	ja	2E-4 bis 1E-10	m = 1 bis 196000			
REI-P (STS-48c SPE) HP-REI (VC-4-16c)	ja	2E-5 bis 1E-10	m = 1 bis 196000			
1 Mantisse: 1 bis 9, Exponent: -3 bis -10 (Ganzzahl)						

Tabelle TD-18 Einstellbare Anomalien (OC-12c/STM-16c) und Triggerarten

Die Einblendung von **Fehlern** (Anomalien) und **Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

1.3.7 OC-48c/STM-16c-Alarmerzeugung (Defekte)

Defekt	Test Sensor- Funktion	Test Sensor-Schwellen			
-	Ein/Aus	M in N	t1 t2		
LOS (optisch)	ja	M = 800 bis 7200 N = 1600 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
LOF-2488	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
TIM-L (OC-48c) RS-TIM (STM-16c)	ja	-	-		
AIS-L (OC-48c) MS-AIS (STM-16c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
RDI-L (OC-48c) MS-RDI (STM-16c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
LOP_P (STS-12c SPE/STS-48c SPE) ¹ AU-LOP (VC-4-4c/VC-4-16c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
LOP-Cx ²	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
AIS-P (STS-12c SPE/STS-48c SPE) ¹ AU-AIS (VC-4-4c/VC-4-16c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
AIS-Cx ²	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
UNEQ-P (STS-12c SPE/STS-48c SPE) HP-UNEQ (VC-4-4c/VC-4-16c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
PLM-P (STS-12c SPE/STS-48c SPE) HP-PLM (VC-4-4c/VC-4-16c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
RDI-P (STS-12c SPE/STS-48c SPE) HP-RDI (VC-4-4c/VC-4-16c)	ja	M = 1 bis N - 1 N = 1 bis 8000	t1 = 0,1 bis 60,0 s t2 = 0,2 bis 600 s		
TIM-P (STS-12c SPE/STS-48c SPE) HP-TIM (VC-4-4c/VC-4-16c)	ja	-	-		

¹ Einblendung in alle vier Pointer (AU-4) für STS-12c SPE/VC-4-4c Einblendung in alle sechzehn Pointer (AU-4) für STS-48c SPE/VC-4-16c

Tabelle TD-19 Einstellbare Defekte (OC-48c/STM-16c)

Die Einblendung von **Alarmen** (Defekte) und **Fehlern** (Anomalien) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

X = 1 bis 4 für STS-12c SPE/VC-4-4c
 X = 1 bis 16 für STS-48c SPE/VC-4-16c
 Einblendung nur in den ausgewählten Pointer (AU-4)

1.4 Payload-Erzeugung

1.4.1 "BULK" Generator

nur mit Option BN 3035/90.90 oder BN 3035/90.93

1.4.1.1 Payload

Bitrate (STS-48c SPE/VC-4-16c)	2396,16 Mbit/s
Bitrate (STS-12c SPE/VC-4-4c)	599,04 Mbit/s
	,
Struktur	ungerahmt

1.4.1.2 Bitmuster

Digitalwort	16 Bit
Quasizufallsfolge	PRBS 23, PRBS 23 invers, PRBS 31, PRBS 31 invers

1.4.1.3 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.3.6, Seite TD-33 beschrieben werden, kann folgende Anomalie eingeblendet werden:

Anomalie	Single	Rate ¹		
TSE	ja	1E-3 bis 1E-9		
1 Mantisse: 1, Exponent -3 bis -9 (Ganzzahl)				

Tabelle TD-20 Zusätzlich einstellbare Anomalie (STS-12c SPE/VC-4-4c, STS-48c/VC-4-16c)

Die Einblendung von **Fehlern** (Anomalien) und **Alarmen** (Defekte) schließt sich gegenseitig aus. Die Aktion, die zuerst angewählt wurde, ist aktiv. Die zweite Aktion wird abgelehnt.

1.4.2 ATM-Sendeteil für STS-12c SPE/VC-4-4c-Container

nur mit Option BN 3035/90.70 (ATM-Modul) und BN 3035/90.91

1.4.2.1 Scrambling

Das Scrambling erfolgt nach der ITU-T-Empfehlung I.432 (X⁴³+1). Die Funktion ist abschaltbar.

1.4.2.2 Fehlereinblendung (Anomalien)

Zusätzlich zu den Fehlerarten, die in Kap. 1.3.6, Seite TD-33 beschrieben werden, können folgende Anomalien eingeblendet werden.

Fehlerart Anomalie	Single	Rate ¹	Sensor-Schwellen
			M in N
HEC uncor. ²	ja	1E-2 bis 1E-6	M = 1 bis 31 N = M + 1 bis M + 31
HEC cor. ³	ja	1E-2 bis 1E-6	M = 1 bis 31 N = M + 1 bis M + 31
AAL-1 Cell loss	ja	1E-3 bis 1E-6	-
AAL-1 CRC	ja	1E-3 bis 1E-6	-
AAL-1 PE	ja	1E-3 bis 1E-6	-

¹ Mantisse: nur 1, Exponent: -1 bis -6 (Ganzzahl)

Tabelle TD-21 Zusätzlich einstellbare Fehlerarten (Anomalien)

Die Fehler AAL-1 Cell loss, AAL-1-CRC und AAL-1-PE beziehen sich auf den Meßkanal. Fehler im Testmuster (TSE) werden in die ATM-Payload bzw. in die AAL-1-Payload des Testkanals eingeblendet.

Korrigierbare und nicht korrigierbare Headerfehler werden in den Gesamtzellenstrom eingeblendet.

² nicht korrigierbare Headerfehler

³ korrigierbare Headerfehler

1.4.2.3 Alarmerzeugung (Defekte)

Zusätzlich zu den Alarmtypen, die in Kap. 1.3.7, Seite TD-34 beschrieben sind, können folgende Defekte erzeugt werden.

Defekt	Test Sensor-Funktion	Single
	Ein/Aus	
LCD ¹	ja	ja
VP-AIS	ja	ja
VP-RDI	ja	ja
VC-AIS ²	ja	ja
VC-RDI ³	ja	ja
Vx-AIS ⁴	ja	ja
Vx-RDI ⁴	ja	ja

¹ LCD (Loss of Cell Delineation) wird durch nicht korrigierbare Headerfehler in ≥ 7 aufeinanderfolgenden Zellen erzeugt.

Tabelle TD-22 Zusätzlich instellbare Alarmtypen (Defekte)

1.4.2.4 Testkanal

Zellen

Header

UNI/NNI, VCI, VPI, PT und CLP	
Payload	
Quasizufallsfolgen	. PRBS 11, PRBS 15, PRBS 20, PRBS 23

Lastprofile

Constant, Equidistant, Burst

Lastprofil Constant

Auflösung: abhängig von eingestelltem Lastbereich	
14,976 bis 1482,624 kbit/s	14,976 kbit/s
149,76 bis 14826,24 kbit/s	149,76 kbit/s
1497,6 bis 149760 kbit/s	1497,6 kbit/s

² AIS: Alarm Indication Signal; VC: Virtual Channel; VP: Virtual Path

³ RDI: Remote Defect Indication

⁴ Bei Vx-AIS bzw. Vx-RDI werden die Alarme in VP und VC parallel eingeblendet.

Einstellbereich Equidistant

Zellabstand 4 bis 40000 Maximale Abweichung des Zellabstands	
Auflösung: abhängig von eingestelltem Zellabstandsbereich 4 bis 400) Zellzeiten
Einstellbereich Burst	
Maximale Burstlänge 4092 Zell Burstlast 1497,6 bis 14	

Auflösung.....abhängig von der Burstlänge

1.4.2.5 Hintergrundlast

1.4.2.6 Füllzellen

Der Zellstrom wird mit IDLE-Zellen oder UNASSIGNED-Zellen aufgefüllt. Die Funktion ist umschaltbar.

1.4.2.7 AAL-1-Segmentation

Im Testkanal können in der AAL-1-PDU Signale mit den Systembandbreiten 1,5 Mbit/s, 2 Mbit/s, ... gesendet werden.

2 Empfangsteil

2.1 Digitalsignal-Eingänge

2.1.1 Signaleingang [44], optisch

Vorsicht

Zerstörung des Eingangs [44]

Der maximal zulässige Eingangspegel von -8 dBm darf nicht überschritten werden, da sonst der optische Eingang zerstört werden kann.

- ⇒ Fügen Sie deshalb unbedingt einen optischen Abschwächer ein:
 - beim Schleifenbetrieb RX TX
 - bei höheren Eingangspegeln

Anschluß
Meßadapter "Faser-Faser" zum Direktanschluß verschiedender 2,5-mm-Steckverbindersiehe Zubehörliste
Eingangsempfindlichkeit STM-16 / OC-48 ***8 bis -28 dBm
Max. zulässiger Eingangspegel
Wellenlänge
Der Empfänger erfüllt die Bedingungen der ITU-T-G.957-Klassen S16.2, L16.2, L16.3 bzw. S16.1, und L16.1.
010.1, und £10.1.
Pegelanzeige des optischen Signals
Pegelanzeige des optischen Signals
Pegelanzeige des optischen Signals Auflösung 1 dBm
Pegelanzeige des optischen Signals Auflösung 1 dBm Genauigkeit ± 3 dB

2.1.2 Signaleingang [43], elektrisch

Anschluß
BuchseSMA
Innenwiderstand des Signaleingangs
Code NRZ (verscrambelt)
Eingangsspannungsbereich
Bitrate

Statusanzeige "LOS" (Loss of signal)

LED leuchtet, wenn der Signaleingang aktiv ist und kein Signal anliegt.

2.1.3 **Taktausgang [42]**

Für den rückgewonnenen Empfangstakt

Bitrate
Anschlußunsymmetrisch (koaxial)
BuchseSMA
Innenwiderstand
Ausgangsspannung≥ 100 mVpp

2.1.4 Taktrückgewinnung

siehe "Technische Daten" des Grundgeräts

2.2 SDH- und SONET-Empfangssignale

- Auswertung eines OC-48c-Signals entsprechend dem GR-253-Bellcore-Standard.
- Auswertung eines STM-16c-Signals entsprechend den ITU-T-Empfehlungen G.707.

2.2.1 OC-48c/STM-16c-Empfangssignal

Auswertung des OC-48c/STM-16c-Signals:

- Analyse des Transport Overhead (TOH)/Section Overhead (SOH), des Path Overhead (POH) und der Payload (BULK) für STS-12c SPE/VC-4-4c-Container direkt oder in Zusammenarbeit mit dem ATM-Modul (Option BN 3035/90.70).
- Analyse des Transport Overhead (TOH)/Section Overhead (SOH), des Path Overhead (POH) und der Payload (BULK) für STS-48c SPE/VC-4-16c-Container.
- Analyse des Transport Overhead (TOH)/Section Overhead (SOH) und Durchschleifen des STS-12c SPE/VC-4-4c-Signals zum Sender (Through).

2.2.2 Descrambling

Das Descrambling erfolgt nach der ITU-T-Empfehlung G.707. Der Descrambler kann nicht ausgeschaltet werden.

Tip: Bei unverscrambelten Eingangssignalen ist darauf zu achten, daß keine langen "Null"-oder "Eins"-Folgen im Datenstrom enthalten sind.

2.3 Meßarten

2.3.1 Auswertung des Section Overhead (SOH), Transport Overhead (TOH)

Anzeige

des kompletten SOH, TOH: (16 kanalbezogene Teil-SOH) hexadezimal	
des Trace Identifier J0	
Overhead Capture	,

Auswertung

Bitfehlermessung

mit Quasi-Zufallsfolge PRBS11 .		E1, F1, E2 (Einzel-Byte)
mit Quasi-Zufallsfolge PRBS11 .	D1	1 bis D3, D4 bis D12 (Byte-Gruppe)

Ausg	abe
------	-----

2.3.2 Auswertung des Path Overhead (POH)

2.3.2.1 Contiguous Concatenation

Anzeige

des kompletten POH
des Trace Identifier J1
Auswertung
Bitfehlermessung
mit Quasi-Zufallsfolge PRBS11
Ausgabe
Die Ausgabe der Overhead-Kanäle erfolgt über die
DCC/ECC-Schnittstelle, Bu [21] (V.11)

Concatenation

2.3.3 Messung von AU-Pointeraktionen

Auswertung

Der AU-Pointer wird als absoluter Wert dargestellt. Die Pointerbewegung wird nach ihrer Richtung erfaßt und gezählt.

NDF (New Data Flag) wird erfaßt und gezählt.

Anzeige

- Anzahl der Pointeroperationen für AU-Pointer: Inkrement, Dekrement, Summe Inkrement + Dekrement, Differenz Inkrement - Dekrement
- Pointeradresse
- Anzahl der NDF-Ereignisse
- Korrespondierende Taktabweichung
- AU-NDF bzw. NDF-P können mit der LED-Anzeige (Frontplatte) angezeigt werden (Application Manager - Menü "Configuration" - LED Display ...):
 - die LED "AU-LOP/LOP-P" zeigt zusätzlich zur Meldung "AU-LOP" die Meldung "AU-NDF" bzw. zusätzlich zur Meldung "LOP-P" die Meldung "NDF-P" an

Absolute Pointerwerte, Inkrement, Dekrement, Summe Inkrement + Dekrement und NDF werden in grafischer Histogramm-Darstellung mit einer wählbaren Auflösung von Sekunde, Minute, Stunde oder Tag angezeigt.

Ausdruck

Absolute Pointerwerte, Inkrement, Dekrement, Summe Inkrement + Dekrement und NDF werden mit einer Auflösung von einer Sekunde in tabellarischer Form ausgedruckt.

2.3.4 Fehlermessungen (Anomalien)

Auswertung

Alle Fehler (Anomalien) werden parallel gezählt und gespeichert.

oder 1 bis 99 Stunden oder 1 bis 99 Tage

oder 1 bis 99 Minuten

Anzeige

der Anomalien über LEDs:

CURRENT LED (rot) leuchtet, während die Anomalie anliegt.

HISTORY LED (gelb) leuchtet, wenn die Anomalie mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Anomalie	LED
OOF-2488	LOF/OOF
B1 (OC-48c/STM-16c)	B1/B2
B2 (OC-48c/STM-16c)	B1/B2
REI-L (OC-48c) MS-REI (STM-16c)	-
B3 (STS-12c SPE/STS-48c SPE/VC-4-4c/VC-4-16c)	B3
REI-P (STS-12c SPE/STS-48c SPE) HP-REI (VC-4-4c/VC-4-16c)	-

Tabelle TD-23 LED-Anzeige der möglichen Anomalien (OC-48c/STM-16c)

Auswertung und Anzeige der B2-Fehler bezieht sich auf den verketteten Datenstrom (BIP-384). Auswertung und Anzeige der B3-Fehler bei Contiguous Concatenation: BIP-8

2.3.5 Alarmerkennung (Defekte)

Auswertung

Alle anliegenden Alarme (Defekte) werden soweit wie möglich parallel ausgewertet und gespeichert. Die Speicherung erfolgt nur während eines gestarteten Meßintervalls

Anzeige

der Defekte über LEDs:

CURRENT LED (rot) leuchtet, während der Defekt anliegt.

HISTORY LED (gelb) leuchtet, wenn der Defekt mindestens einmal im gestarteten

Meßintervall aufgetreten ist oder aktiv ist.

Defekt	LED
LOS (optisch)	LOS
LOF-2488	LOF/OOF
TIM-L (OC-48c) RS-TIM (STM-16c)	-
AIS-L (OC-48c) MS-AIS (STM-16c)	MS-AIS/AIS-L
RDI-L (OC-48c) MS-RDI (STM-16c)	MS-RDI/RDI-L
LOP-P (STS-12c SPE/STS-48c SPE) AU-LOP (VC-4-4c/VC-4-16c)	AU-LOP/LOP-P
LOP-Cx ¹	AU-LOP/LOP-P
AIS-P (STS-12c SPE/STS-48c SPE) ¹ AU-AIS (VC-4-4c/VC-4-16c)	AU-AIS/AIS-P
AIS-Cx ²	AU-AIS/AIS-P AU-LOP/LOP-P
UNEQ-P (STS-12c SPE/STS-48c SPE) HP-UNEQ (VC-4-4c/VC-4-16c)	HP-UNEQ/UNEQ-P
PLM-P (STS-12c SPE/STS-48c SPE) HP-PLM (VC-4-4c/VC-4-16c)	HP-PLM/PLM-P
RDI-P (STS-12c SPE/STS-48c SPE) HP-RDI (VC-4-4c/VC-4-16c)	HP-RDI/RDI-P
TIM-P (STS-12c SPE/STS-48c SPE) HP-TIM (VC-4-4c/VC-4-16c)	-

¹ AU-LOP wird angezeigt, wenn in mindestens einem AU-4-Pointer ein LOP erkannt wird.

Tabelle TD-24 LED-Anzeige der möglichen Defekte (OC-48c/STM-16c)

² AU-AIS wird angezeigt, wenn in allen vier/sechzehn AU-4-Pointern ein AIS erkannt wird. Wird AU-AIS nicht in allen AU-4-Pointern erkannt, so wird AU-LOP-LOP-P angezeigt.

2.4 Payload

2.4.1 BULK-Empfänger

nur mit Option BN 3035/90.90 oder BN 3035/90.93

2.4.1.1 Payload an Bitmustern

siehe Kap. 1.4.1.1, Seite TD-35 und Kap. 1.4.1.2, Seite TD-35

2.4.1.2 Fehlermessungen (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 2.3.4, Seite TD-44 beschrieben werden, kann folgende Anomalie ausgewertet und angezeigt werden:

Anomalie	LED
TSE	TSE

Tabelle TD-25 LED-Anzeigen der zusätzlichen Anomalie

2.4.1.3 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 2.3.5, Seite TD-45 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden:

Defekt	LED
LSS	LSS

Tabelle TD-26 LED-Anzeigen für zusätzliche Defekte

2.4.2 ATM-Empfangsteil

nur mit Option BN 3035/90.70 und BN 3035/09.91

2.4.2.1 Descrambling

Das Descrambling erfolgt nach der ITU-T-Empfehlung I.432 (X⁴³+1). Die Funktion ist abschaltbar.

2.4.3 Meßarten

2.4.3.1 Fehlermessung (Anomalien)

Zusätzlich zu den Fehlermessungen, die in Kap. 2.3.4, Seite TD-44 beschrieben werden, können folgende Anomalien ausgewertet und angezeigt werden.

Anomalie	LED	Erläuterung	
HCOR	-	Correctable Header Error	
HUNC	-	Uncorrectable Header Error	
CER	-	Cell Error Ratio	
CLR	-	Cell Loss Ratio	Bei Messungen mit
CMR	-	Cell Misinsertion Rate	Testzellen
AAL-1-CRC	-	AAL1 CRC Error	
AAL-1-PE	-	AAL1 Parity Error	bei AAL-1 Messungen
AAL-1-CLR	-	AAL1 Cell Loss Ratio	Mossangen
AAL-1-CMR	-	AAL1 Cell Misinsertion Rate	

Tabelle TD-27 Anzeige und Auswertung von Anomalien

Die Fehler HUNC, HCOR beziehen sich auf den kompletten Zellstrom, alle anderen Fehler hingegen auf den Meßkanal.

2.4.3.2 Alarmerkennung (Defekte)

Zusätzlich zu den Alarmerkennungen, die in Kap. 2.3.5, Seite TD-45 beschrieben werden, können folgende Defekte ausgewertet und angezeigt werden.

Defekt	LED	Erläuterung	
LCD	LOF/LCD	Loss of Frame/Loss of Cell Delineation	
OCR	LOF/LCD	Overflow Cell Rate ¹	
OCLR	-	Cell Loss Overflow ²	bei Messungen
OCMR	-	Cell Misinserted Overflow ³	mit Testzellen
VC-AIS	-	Virtual Channel Alarm Indication Signal	
VC-RDI	-	Virtual Channel Remote Defect Indication	
VP-AIS	-	Virtual Path Alarm Indication Signal	
VP-RDI	-	Virtual Path Remote Defect Indication	
AAL-1-OOS	-	AAL1 Out of Sync	

- 1 Testkanal: maximale Zellrate (CBR) = 149760 kbit/s; maximal aufeinanderfolgende Zellen bei 599040 kbit/s = 400
- 2 Mehr als 255 Zellverluste in 100 ms oder relativ zur letzten Testzelle
- 3 Mehr als 255 falsch eingefügte Zellen in 100 ms oder relativ zur letzten Testzelle

Tabelle TD-28 LED-Anzeigen der zusätzlichen Alarme

2.4.3.3 ATM-Performance-Messungen

Error Related Performance Parameter

Die Messung erfolgt mit Testzellen.

Meßergebnisse

Lost Cell Count, Cell Loss Ratio	CLR
Misinserted Cell Count, Cell Misinserted Rate	CMR
Error Cell Count, Cell Error Ratio	CER

Cell Transfer Delay

Die Zellaufzeitmessung erfolgt mit Testzellen.

Anzeige	Häufigkeitsverteilung
Auflösung	160 ns bis 0,355 s
Meßbereich	20 μs bis 42,9 s
Meßbereichsoffset	0 bis 0,167 s
Einheit	µs

Zellen mit Laufzeiten außerhalb des Meßbereichs werden in Klasse 0 (underflow) oder Klasse 127 (overflow) gezählt.

Cell Delay Variation

Die Zellaufzeitabweichung wird mit Testzellen gemessen.

Die Ergebnisse sind nur gültig, wenn keine Laufzeiten außerhalb des Meßbereichs erkannt wurden.

2.4.4 Nutzkanalanalyse und Lastmessung

Zellenfilter (VCI, VPI, CLP) zur Extraktion des Testkanals.

Die VCI- und CLP-Filter sind abschaltbar.

Durchschnittszellrate

Die Messung erfolgt parallel über alle Verbindungen und gleichzeitig im Testkanal.

eßintervall	S
uflösung	6

Lastanzeige

Einheit	s, Cells/s, %
Skalierung linear, lo	garithmisch

Spitzenzellrate

Die Messung erfolgt im Testkanal.

Meßintervall	3
Auflösung	ó

Lastanzeige

Einheit	Mbit/s, Cells/s, %
Skalierung	linear, logarithmisch

Kanalauslastungshistogramm

Das Kanalauslastungshistogramm zeigt die Verteilung von 100-ms-Meßintervallen nach gemessener Last

Meßintervalle
Klasse "0" enthält die Anzahl der 100-ms-Meßintervalle, in denen 0% Last gemessen wurde.
Klassenbreite
Lastanzeige

Zellverteilung im Nutzkanal

Darstellung der Zellen im Nutzkanal klassifiert nach Nutzzellen, OAM-Zellen und Nutzzellen mit markierter CLP.

Meßintervalle	 1 s
Anzeige	 Zellenanzahl

Testkanal

Testzellenformat

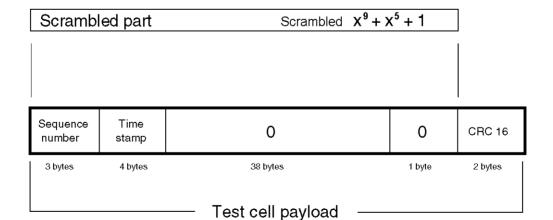
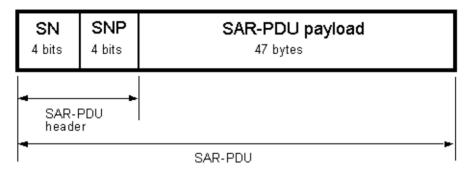


Bild TD-5 Testzellenformat nach ITU-T O.191 (Draft 4/95)



2.4.4.1 AAL-1 Reassembly

Das Reassembling von AAL-1-strukturierten Zellen erfolgt aus der SAR-PDU; das Format ist im Bild unten ersichtlich. Die Fehlermessung "TSE" wird mit gerahmten oder ungerahmten Quasizufallsfolgen (PRBS) durchgeführt, die in der SAR-PDU-Payload gemappt wurden.

Für Fehlermessungen stehen folgende Payloadmuster zur Verfügung:

- · PRBS ungerahmt
- PRBS in PCM-30-Rahmen
- PRBS in PCM-30-Rahmen (CRC-codiert)

SN: Sequence Number SNP: Sequence Number Protection PDU: Protocol Data Unit SAR: Segmentation and Reassembly

Bild TD-6 SAR-PDU-Format für AAL-1-Zellen